HAND OUT 18: Hydraulic routing (Chapter 6 of our syllabus). Source:
Mays, L. (2006). “Water resources engineering.” John Wiley and Sons.
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Checktoseeif C; + C, + C; =1t
0.3396 + 0.6038 + 0.0566 = 1
Using equation (9.3.6) with /; = 0 cfs, I, = 800 cfs, and ) = 0 cfs, compute 0, at ¢ = 1 hr:
Q, = C L, + Gl + €0,
= (0.3396)(800) + 0.6038(0) + 0.0566(0)
= 272 cfs (7.7 m%/s)
Next compute O at £ = 2 hr:
0, = CL + CI,+C0,
= (0.3396)(2000) + 0.6038(800) + 0.0566(272)
= 1178 cfs (33 m?/s)

The remaining computations result in

Time (hes) 0 1 2 3 4 5 ] 7
Q (cfs) 0 272 1178 2701 4455 4886 4020 3009
Time (hrs) 8 9 10 11 12 13 14 15
0 (cfs) 2359 1851 1350 918 610 276 16 1

94 HYDRAULIC (DISTRIBUTED) ROUTING

Distributed routing or hydraulic routing, also referred 1o as unsteady flow routing, is based up
the one-dimensional unsteady flow equations referred to as the Sains—Venant eguations. T
hydrologic river routing and the hydrologic reservoir routing procedures presented previously ¢
lumped procedures and compute flow rate as a function of time alone at a downstream locatic
Hydraulic (distributed) flow routings allow computation of the flow rate and water surface eler
tion (or depth) as function of both space (location) and time. The Saint-Venant equations are p:
sented in Table 9.4.1 in both the velocity-depth (nonconservation) form and the discharge-ai
{conservation) form.

The momentum equation contains terms for the physical processes that govern the flow morm
turn. These terms are: the local acceleration term, which describes the change in momentum d
to the change in velocity over time, the convective acceleration term, which describes the chan
in momentum due to change in velocity along the channel, the pressure force term, proportios
to the change in the water depth along the channel, the gravity force term, proportional to the ¢
slope S, and the friction force term, proportional to the friction slope S;. The local and convecti
acceleration terms represent the effect of inertial forces on the fiow.

Alternative distributed flow routing models are produced by using the full continuity equati
while eliminating some terms of the momentum equation (refer to Table 9.4.1). The simplest d
tributed model is the kinematic wave model, which neglects the local acceleration, convect
acceleration, and pressure terms in the momentum equation; that is, it assumes that §; = Sfand 1
friction and gravity forces balance each other. The diffusion wave model neglects the local a
convective acceleration terms but incorporates the pressure term. The dyramic wave model c
siders all the acceleration and pressure terms in the momentum equation.

The momentum equation can also be written in forms that take into account whether the fk
is steady or unsteady, and uniform or nonuniform, as illustrated in Table 9.4.1. In the continu
equation, 34/31 = 0 for a steady flow, and the lateral inflow g is zero for a uniform flow.
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Table 9.4.1  Summary of the Saint—Venant Equations*

Continuity equation

30 oA
—_— —:O
o | or

Conservation form

dy dV a
Nonconservation form hed +—+ & G

dxr dx o

Momentum equation

Conservation form

1 00 19(0Q° dy '
3 " ) o - s, - 5 =0
A ot Adx\ A dx

Local Convective Pressure Gravity  Friction
acceleration  acceleration force force force
ferm term ferm term term

Nenconservation form (unit with clement)

v oV ' dy
- + V— + — - S, - S =0
o ox Fe (S )
| Kinematic wave
L Diffusion wave
[ Dynamic wave

*Neglecting lateral inflow, wind shear, and eddy losses, and assuming § = 1.

{' "y x = longitudinal distance along the channel or river, { = time, A = cross-sectional area of flow, A = water surface ele-
9 } vation, sz friction slope, S, = channel bottom slope, g = acceleration due to gravity, V = velocity of flow, and y=
p depth of flow.

94.1 Unsteady Flow Equations: Continuity Equation

The c;mrinuity equation for an unsteady variable-density flow through a control volume can be
written as in equation (3.2.1):

o=ijpdv+jpv-dA (9.4.1)
drt
Cv S

Consider an elemental control volume of length dx in a channel. Figure 9.4.1 shows three views
of the contro! volume: (@) an elevation view from the side, () a plan view from above, and {c)a
chanel cross-section. The inflow to the control volume is the sum of the flow Q enicring the con-
trol volume at the upstream end of the channel and the lateral inflow q entering the control vol-
ume as a distributed flow along the side of the channel. The dimensions of ¢ are those of flow per
unit length of channel, so the rate of lateral inflow is gdx and the mass inflow rate is

j pV - dA =—p(Q + gdx) (94.2)
inlet
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V_2 “““““ T _Energy grade line

2z ——

Datum

(¢) Cross-section.

Figure 9.4.1 An élemental reach of channel for derivation of Saint-Venant
equations.

This is negative because inflows are considered negative in the control volume approach
{Reynolds transport theorem). The mass outflow from the control volume is

j pV dA = p(Q + a_deJ (9.4.3)
ax

outlet

where 3(J/dx is the rate of change of channel flow with distance. The volume of the channel ele-
ment is Adx, where A is the average cross-sectional area, so the rate of change of mass stered
within the control volume is

4 fpav = IpAdy) 9.44)

v ot
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where the partial derivative is used because the control volume is defined to be fixed in size
(though the water level may vary within it). The net outflow of mass from the control volume is
found by substituting equations (9.4.2)—-(9.4.4) into (9.4.1):

oA _ 1 iy p(Q N dix) -0 (9.4.5)
ar dx

Assuming the fluid density p is constant, equation (9.4.5) is simplified by dividing through by pdx
and rearranging to produce the conservation form of the continuity equation,

9 2 A _ =0 (9.4.6)
ox

which is applicable at a channel cross-section. This equation is valid for a prismatic or a nonpris-
matic channel; a prismatic chanael is one in which the cross-sectional shape does not vary along
the channef and the bed slope is constant.

For some methods of solving the Saint—Venant equations, the nonconservation form of the con-
tinuity equation is used, in which the average flow velocity V'is a dependent variable, instead of
Q. This form of the continuity equation can be derived for a unit width of flow within the chan-
nel, neglecting lateral inflow, as follows. For a unit width of flow,A =y X 1 =yand 0 = VA =
Vy. Snbstituting into equation (9.4.6} yields

a(Vy)  dy
A oo 9.4.7
dx * at ¢ )
or
ay aV dy '
ax ax * ot ‘ ©4.8)

9.4.2 Momentum Equation

Newton’s second law is written in the form of Reynolds transport theorem as in equation (3.4.5):

) ZF;% [Vodv+Y vov-da (9.4.9)
v cs

This states that the sum of the forces applied is equal to the rate of change of momenium stored
within the control volume plus the net outflow of momentuin across the control surface. This equa-
tion, in the form F = 0, was applied {o steady uniform flow in an open channel in Chapter 5.
Here, unsteady nonuniform flow 1s considered.

Forces. There are five forces acting on the control volume:

Y F=F, +F; +F,+F, (9.4.10) |

where F, is the gravity force along the channel due to the weight of the water in the control volume,
Fpis thc friction force along the bottom and sides of the control volume, F), is the contraction/
axpansmn force produced by abrupt changes in the channel cross-section, and F s the unbalanced
pressure force (see Figure 9.4.1). Each of these four forces is evaluated in the following para-
graphs.

Gravity. The volume of fluid in the conirol volume is Adx and its weight is pgAdyx. For a small
angle of chanuel inclination 8, §, = sin 0 and the gravity force is given by

F, = pgAdxsin 8 = pgASydx 94.11)

where the channel bottom slope S, equals --3z/ax.
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Friction. Frictional forces created by the shear stress along the bottom and sides of the control
volume are given by —7,Pdx, where 7, = YRS, = pg(A/P)S, is the bed shear stress and P is the

“wetted perimeter. Hence the friction force is writien as

F,= —pgAS,dx (9.4.12)

where the friction slope S, is derived from resistance equations such as Manning’s equation.

Contraction/expansion. Abrapt contractions or expansions of the channel cause energy losses
through eddy motion. Such losses are similar to minor losses in a pipe system. The magnitade of
eddy losses is related to the change in velocity head V%/2g = (Q/A)*/2g through the length of chan-
nel causing the losses. The drag forces creating these eddy losses are given by

= —pgAS, dx 9.4.13)
where §, is the eddy loss slope
2
K HQ/AY 9.4.14)
2g  ox

in which K, is the nondimensional expansion or contraction coefficient, negative for channel
expansion {(where 3(Q/A)*/dx is negative) and positive for channel contractions.

Pressure. Referring to Figure 9.4.1, the unbalanced pressure force is the resultant of the hydro-
static force on the each side of the control volume. Chow et ak. (1988) provide a detailed deriva-
tion of the pressure force F, as simply

F, =pgA a}’: dx (9.4.15)

d
The sum of the forces in equation (9.4.10) can be expréssed, after substituiing equations
(9.4.11), (9.4.12), (9.4.13), and (9.4.15), a3

3
SF = pASydx — pgAS sdx — pgAS,dx — pgA a—ydx (9.4.16)
X

Momentum. The two momentum terms on the right-hand side of equation (9.4.9) represent the
rate of change of storage of momentum in the control volume, and the net cutflow of momentum
across the control surface, respectively.

Net momentum outflow. The mass inflow rate to the control volume (equation (9.4.2)) is
—p(Q + gdx), representing both stream inflow and lateral inflow. The corresponding momentum
is computed by multiplying the two mass inflow rates by their respective velocity and a momen-
tum correction factor B:

[vovda= —p(BVQ +Bv, qdx) (9.4.17)

inlet

where —pBVQ is the momentum entering from the upstream end of the channel, and —pBv gdx is
the momentum entering the main channel with the lateral inflow, which has a velocity v, in the x
direction. The term B is known as the momentum coefficient or Boussinesq coefficient; it accounts
for the nonuniform distribution of velocity at a channel cross-section in computing the momen-
tunt. The value of § is given by

B= (9.4.18)

V2A
where v is the velocity through a small element of area dA in the channel cross-section. The value

of B ranges from 1.01 for straight prismatic channels to 1.33 for river valleys with floodplains
(Chow, 1959; Henderson, 1966).
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The momentum leaving the control volume is

Ava) . } (9.4.19)

j VpV dA = [BVQ+

outlet

The net outflow of momentum across. the control surface is the sum of equations (9.4.17) and
(9.4.19): ‘

f VpVdA = —p(BVQ +Brgdx) + p[BVQ 4+ JBVD) a(BVQ) ]

= ﬁp[ Ved — -————a(g‘:Q)]dx ' (9.4.20)

Momentum storage. The time rate of change of momentum stored in the control volume is found
by using the fact that the volume of the elemiental channel is Adx, so its momentum is pAdxV, or
pQdx, and then

= jv = p-— (9.4.21)

After substituting the force terms from equation (9.4.16) and the momentum terms from equations
(9.4.20) and (9.4.21) into the momentuta equation (9.4.9), it reads

pgASydx — pgAS pd - pgAS,ds - pgAg-J—’dx - gp[ v.q a(BVQ)]dx +p aQ de (9.422)
X x

Dividing through by pdx, replacing V with Q/A, and rearranging produces the conservation form
of the momentum equation:

30 , 30’ /A ( )
+gAl =5y + 8¢+ =0 9.4.23
T a 3 S0ty Bqv ( )
The depth y in equation (9.4.23) can be replaced by the water surface elevation A, using
h=y+z (9.4.24)

where z is the elevation of the channel bottom above a datuti such as mean sea level. The deriva-
tive of equation (9.4.24) with respect to the longitudinat distance x along the channel is

dh _dy dz
Faw B . (9.4.25)
but dzfdx = —8;, s0
oh _dy
4.2
o ax 5o (04.26)

The momentum equation can now be expressed in terms of h by using equation (9.4.26) in
(9.4.23)

ag e 0°/4) & :
= + — + g4 3 +Sf+.S'] Bagv, ﬁ_o (9.4.27)

The Saint-Venant equations, {(9.4.6) for continuity and (9.4.27) for momentum, are the govern-
ing equations for one-dimensional, unsteady flow in an open channel. The use of the terms S;and

- 8, in equation (9.4.27), which represent the rate of energy loss as the flow passes through the chan-

ne] illustrates the close relationship between energy and momentum considerations in describing
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the flow. Strelkoff (1969) showed that the momentum equation for the Saint—Venant equations can
also be derived from energy principles, rather than by using Newton’s second law as presented
here.

The nonconservation form of the momentum equation can be derived in a similar manner to the
nonconseivation form of the continuity equation. Neglecting eddy losses, wind shear effect, and
lateral inflow, the nonconservation form of theé momentum equation for a unit width in the flow is

av eV

CAAn L 2 _
v +g(ax so+sf]_0 (9.4.28)

9.5 KINEMATIC WAVE MODEL FOR CHANNELS

In Section 8.9, a kinematic wave overland flow runoff model was presented. This is an implicit
nonlinear kinematic model that is used in the KINEROS model. This section presents a general
discussion of the kinematic wave followed by brief description of the very simplest linear models,
such as those found in the U.S. Army Corps of Engineers HEC-1, and the more complicated mod-
els such,as the KINEROS model (Woolhiser et al., 1990).

Kinematic waves govern flow when inertial and-pressure forces are not important. Dynamic
waves govern flow when these forces are important, as in the movement of a large flood wave in
a wide river. In a kinematic wave, the gravity and friction forces are balanced, so the flow does
not accelerate appreciably. :

For a kinematic wave, the energy grade line is paraliel to the channel bottom and the flow is
steady and uniform (S, = S, } within the differential length, while for a dynamic wave the energy
grade line and water surface elevation are not paralle} to the bed, even within a differential
element.

9.5.1 Kinematic Wave Equations

A wave is a variation in a flow, such as a change in flow rate or water surface elevation, and the
wave celerity is the velocity with which this variation travels along the channel. The celerity
depends on the type of wave being considered and may be quite different from the water velocity.
For a kinematic wave the acceleration and pressure terms in the momentum equation are negligi-
ble, so the wave motion is described principally by the equation of continuity. The name kinematic
is thus applicable, as kinematics refers to the study of motion exclusive of the influence of mass
and force; in dynamics these quantjtics are included.
The kinematic wave modetl is defined by the following equations.

Continuity:
0 A
. + i qi{x, 1) 9.5.1)
Momentun:
S, = SJ’r 9.52)

where g(x, £) is the net lateral inflow per unit length of channel.
The momentum equation can also be expressed in the form

A=ag 9.53)

Bt o e e




) /rzn._\‘

N

9.5 Kinematic Wave Model for Channels 299

For example, Manning’s equation written with So=S;and R = A/P is

1.495%/2 :
=270 4503 (9.5.4)

2= PR
which can he solved for 4 as
5
pi3
A=t Q3’ 5 : {9.5.5)
1.49./8,

50 o= [an" 3/ (1.49 Sy )]0-6 and B = 0.6 in this case,

Equation (9.5.1) contains two dependent variables, A and {, but A can be eliminated by differ-
entiating equation (9.5.3):

04 -1 aQJ
= a4 9.5.6)
o’ B0 ( of ©-36)
and substituting for JA/8¢ in equation (9.5.1) to give
Y p-1f 9Q
—+ —|= 9.5.7
5 ke ) =4 9.5.7)
Alternatively, the momentum equation could be expressed as
Q = aA® 9.5.8)
where a and B are defined using Manning’s equation. Using
00  dg oA .
= 9.5.9
gx  dA ox ¢ )
the governing equation is -
dA  dO oA
— === 9.5.10
&t dA ox ¢ )

where d0/dA is determined by differentiating equation (9.5.8):

- 49 _ past (9.5.11)
dA
and substituting in equation (9.5.10):
24 oA
—=aBA¥l—=
5 = & 3 =4 9.5.12)

The kinematic wave equation (9.5.7) has O as the dependént variabie and the kinematic wave
equation (9.5:12) has A as the dependent variable. First consider equation {9.5.7), by taking the
logarithm of (9.5.3):

IndA=lna+BlQ (9.5.13)
and differentiating
ag 1 (dA]
——=—— (9.5.14)
g B\A
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This defines the relationship between relative errors dA/A and dQ/Q. For Manning’s equation
"B < 1, so that the discharge estimation error would be magnified by the ratio 1/B if A were the
dependent variable instead of Q.
Next consider equation (9.5.12); by taking the logarithm of (9.5.8):

InQ=Ina+BhA (9.5.15)
44 _174dQ.
A Bl
or
4 _ B(ﬁ] (9.5.16)
0 A

In this case B > 1, so that the discharge estimation error would be decreased by B if A were the
dependent variable instead of . In summary, if we use equation (9.5.3) as the form of the momen-
tum cquation, then {2 is the dependent variable with equation (9.5.7) being the governing equation;
if we use equation {9.5.8} as the form of the momentum equation, then A is the dependent variable
with equation (2.5.12) being the governing equation.

9.5.2 U.S. Army Corps of Engineers HEC-1 Kinematic Wave Model for Overland
Flow and Channel Routing

)

.

o

The HEC-1 computer program actuaily has two forms of the kinematic wave. The first is based upon
equation (9.5.12) where an explicit finite difference form is used (refer to Figures 9.5.1 and 8.9.2):

Jtb 4
oA _ A Ay

=~ N (9.5.17)
aA Al - A/
v ©518)
and
Al + 4!
A=% (9.5.19)
_ g+ gl
£ g= i+l 5 i+l (9520)
} Ax { a0
. i+ 1 dx )
. Al _ o7 e L
T i+l je1
2 70
T 3t at
J— . J—
Al AL, 0/
A
i dx i+1 i i+1

(a) {6

Figure 9.5.1 Finite difference forms. {a} HEC-1 “standard form;” (b)) HEC-1 “conservation form.”
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Substituting these finite-difference approximations iato equation (9.3.12) gives

. . : .
L+ i 'j+l + Air ij+l -4/ q;f-:l + q[+1
At(AH'I “’Ai-z-l) +a > Ax > (9.5.21)
‘The only unknown in equation (9.5.21) is 4/, so
-1
1 AI + A 1 At
Al = Al aB(Ax St J (401 -4)+(al + )5 ; (9.5.22)

After computing A-’ ' at each grid afong a time line going from upstream to downstream (see
Figure §.9.2), compute the flow using equation (9.5.8):

o/ = a(f +1) (9.5.23)

v
The HEC-1 model uses the above kinematic wave model as long as a stability factor R < 1
{Alley and Smith, 1987), defined by

R= q%x[(qm +4f )B -{4/ )B} forg>0 (9.5.243)
R= aB(A-’) % forg=0 (9.5.24b)

Otherwise HEC-1 uses the form of equation (9.5.1), where (sce Figure 9.5.1)

J+tl A+l
%% _ o AxQz (9.5.25)
JHL 4 J
%_‘Z‘=_Ai - 4 (9.5.26)
S0
Q;rﬂ OitL At _ 4
=LA TR, 9.527)
Solving for the only unknown @7 yields
QI = 07" 4 gAx - t(Aij“ —4)) (9.5.28)

Then solve for A7}, +1 using equation (9.5.23):
1B
At =(La) ©.5.29)

‘The initial condition (values of A and Q at time 8 along the grid, referring to Figure 8.9.2) are com-
puted assuming uniform flow or nonuniform flow for an initial discharge. The upstream boundary
is the inflow hydrograph from which ( is obtained.

The kinematic wave schemes used in the HEC-1 model are very simplified. Chow et al. (1983)
presented both linear and nonlinear kinematic wave schemes based upon the equation (9.5.7) for-
mulation. An example of a more desirable kinematic wave formulation is that by Woolhiser et al.
(1990) presented in the next subsection.
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9.5.3 KINEROS Channel Flow Routing Model

The KINEROS channel routing model uses the equation (9.5.10) form of the kinematic wave
equation {(Woolhiser et al., 1990):

d4  dQodA

—t——=g(x ¢ 9.5.10

ot dA ox o ) ¢ )
where g(x, 1) is the net Iateral inflow per unit length of channel. The derivatives are approximated
using an implicit scheme in which the spatial and temporat derivatives are, respectively,

Jtl _ 4+l
g_A Y Ay AxA: +{1—g) L " Awl {9.5.30)
X
j+1 Jj+1 J+l J+1 f
‘ﬁ gA (_i_?) (AHI -4 ]+(I a)(dQ) [_”in_é‘_.J (9.5.31)
x
and
on_1[ai-al al-al,]
5 f E[ v Y {9.5.32)
or

1 1
A AN v Al Al -4,

i+l 4

r 24t

(9.5.33)

Substituting equations (9.3.31) and (9.5.33) into (9.5.10), we have
Af’++li !+1 +A:J+ _Ar'] +48 (@)}H Az;++11 - A:‘Hl +(1 G} (dg]ﬂl A:+1 _AJ
2At dA Ax Ax

1 i 1 . .
= alil v v gl +d]) (9.5.34)

The only unknown in this equation is AJ '\ » which must be solved for numerically by use of an iter-
ative scheme such as the Newton—Rhapson method (see Appendix A).
Woolhiser et al. (1990) use the following relationship between channel discharge and cross-
sectional area, which embodies the kinematic wave assumption:
£

0=aR™A (9.5.35)

where R is the hydraulic radivs and o« = 1.495"%/n and m = 5/3 for Manning’s equation.

9.5.4 Kinematic Wave Celerity

Kinematic waves result from changes in (. An increment in flow 40 can be written as

dQ = aQ Srd +aa—Q (9.5.36)

Dividing through by dx and rearranging produces:

9Q  d190 _do
n dxd dx (337
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Equations (9.5.7) and (9.5.37) are identica} if

dag
—= 9.5.38
A { )
and
ﬁ - (9.5.39)
dt - aBQ371 and e

Differentiating equation (9.5.3) and rearranging gives

40 1
— = 9.5.40
dA  apgP! ©340)
and by comparing equations (9.5.38) and (9.5.40), it can be seen that
dx  dQ
—=— 0.541
dt  dA ¢ )
or
‘ dx  dQ
=—= 9.5.42
“Tw dA ©342)

where ¢, is the kinematic wave celerity. This implies that an observer moving at a velocity
dx/dt = ¢, with the flow would see the flow rate increasing at a rate of dQ/dx = ¢. if g = 0 the
observer would see a constant discharge. Equations {9.5.38) and (9.5.42) are the characteristic
equations for a kinematic wave, two ordinary differential equations that are mathematically equiv-
alent to the governing continuity and momentum equations.

{: T} The kinematic wave celerity can also be expressed in terms of the depth y as
o 1d
ey = L1do (9.5.43)
B dy
where dA = Bdy.

Both kinematic and dynamic wave motion are present in natural flood waves. In many cases the
channel slope dominates in the momentum equation; therefore, most of a flood wave moves as a
kinematic wave. Lighthill and Whitham (1955) proved that the velocity of the main part of a nat-
ural flood wave approximates that of a kinematic wave. If the other momentum terms (3V/ar,
V(3Viax) and (1/g)dy/dx) are not negligible, then a dynamic wave front exists that can propagate
both upstream and downstream from the main body of the flood wave.

9.6 MUSKINGUM-CUNGE MODEL

Cunge (1969) proposed a variation of the kinematic wave method based upon the Muskingum
method (see Chapter 8). With the grid shown in Figure 9.6.1, the unknown discharge o ,:'li can be

expressed using the Muskingum equation (@, = G, + Gl + G0
ol =™ + GOl + GOl ©9.6.1)

+ el Y S P Tk :
where Q' =010 O/ = Ls @/ =1;;and O} = 0;. The Muskingum coefficients are

A —2KX

LKA X A (062)
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QJ:+1=[- + .
: . 1j+ Q{:;=Qj+1
i+
J . ’
Qf-:Ij Q[‘+1=Qj+1’
I i+1
—_— —

i i+1

Figure 9.6.1 Finite-difference grid for

Muskingum—Cunge method.
Ar4+2KX
= —————— .6-
2T 2K(A-X)+ At ©-63)
2K -X)—Ar

3T oR(-X)+ At

Cunge (1969) showed that when K and Ar are considered constant, equation (9.6.10) is an
approximate solution of the kinematic wave. He further demonstrated that (9.6.1) can be consid-
ered an approximation of a modified diffusion equation if

= ——=—
= " (9.6.5)
and
M2
, X= 2(1 BeyS, ] (9.6.6)

wherte ¢, is the celerity corresponding to O and B, and B is the width of the water surface. The
value of Ax/(d(Q/dA) in equation (9.6.5) represents the time propagation of a given discharge along
a channel reach of length Ax. Numerical stability requires 0 < x < 1/2. The solution procedure is
basically the same as the kinematic wave.

9.7 IMPLICIT DYNAMIC WAVE MODEL

The conservation form of the Saint-Venant equations is used because this form provides the ver-
satility required to simulate a wide range of flows from gradval tong-duration flood waves in rivers
to abrupt waves similar to those caused by a dam failure: The equations are developed from equa-
tions (9.4.6) and (9.4.25) as follows. .
: Weighted four-point finite-difference approximations given by equations (9.7.1)-(9.7.3) are
i used for dynamic routing with the Saint—Venant equations. The spatial derivatives 30/ 3x and 3hidx
| are estimated between adjacent time lines:
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90 _ ol -al" -0/
4_‘:6 i+1 11 1_9\ l+l 7.
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and the time derivatives are:
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The nonderivative terms, such as g and A, arg estimated between adjacent tirne lines, using:

,-+I g+l

—¢ q; . +qia + (1 ) 9) 24’”_1 e‘?ijﬂ + (1 _ B)Zjiij 9.7.5)
j¥l i+l i i . s
A= e{f‘m—g—] { —e)[A—f%ﬂ'—ﬂ} =047 +(1-0)A] (9.7.6)

where g; and A; indicate the lateral flow and cross-sectional area averaged over the reach Ax,.
The finite-difference form of the continuity equation is produced by substituting equations.
(9.7.1), (9.7.3), and (9.7.5) into (9.4.6):
J+l j+1
[Ql-i-l Qi j+1 J + (1 e)( Q£+l Q} é{J
Ax; Ax;

T 13

(A A +(Ax AL — (A A —(Ar Al _ ©77
i 2At; - o
Slrmlarly, thc momentum equation (%.4.27) is written in finite-difference form as:
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i+f +ggg‘(’*fj++‘;’.‘i (Sf) +(5 )J (qu) =0 (9.78)

i

The four-point finite-difference form of the continuity equation can be further modified by mul-
tiplying equation (9.7.7) by Ax; to obtain

0O~ 0F T - I Ax) + (1- 0 Q) -0 - 3] Ax)

Ax; f + : .
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9.79)




