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Similarly, the momentum equation can be modified by multiplying by Ax; to obtain

Ax; . ; . :
aa w0l ol o)

2+ 2 i »
(A T P P S o W

J i . . .
O e I e | LR R S R PSR,

i+
{9.7.10)
where the average values (marked with an overbar) over a reach are defined as
p=PitPia , (9.7.11)
2
- A+ A
. A = J*TA!& (9.7.12)
L
i : — B +B:
I , B =Bt B ©.1.13)
; 2
0= 93 Qi : (9.7.14)
2 ;
Also,

Ri=Ai/B; (9.7.15)
for use in Manning’s equation. Manning’s equation may be solved for §; and written in the form
shown below, where the term IQIQ has magnitude 7 and sign positive or negative depending on
whether the flow is downstream or upstream, respectively:

2= =
_ niia0.
(85),= —%; (9.7.16)
4 ¢ 2.208A: R:
The minor headlosses arising from coniraction and expansion of the channel are proportional to
~ the difference between the squares of the downstream and upstream velocities, with a contraction/
expansion loss coefficient K
- K.} 2 2
A 2 -(9) 0117
T 288x|\AJi \AJ;
* The terms having superscript j in equations (9.7.9) and (9.7.10) are known either from initial
conditions or from a solution of the Saint—Venant equations for a previous time line. The terms g,
) Ax, B, K,, C,, and V_ arc known and must be specified independently of the sclution, The
2T, R . . . . . ;
unknown terms are 07", @/, WIS L AT, 4SS B/ and B/} However, all the terms can be
expressed as functions of the unknowns Qij , Q{:'ll, Bt and kf:l' so there are actually four
unknowns. The unknowns are raised to powers other than unity, so equations (9.7.9) and (9.7.10)
are nonlinear equations.
The continuity and momentum equations are considered at each of the N-1 rectangular grids

shown in Figure 9.7.1, between the upstream boundary at { = 1 and the downstream boundary at
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Figure 9.7.1 The x-¢ solution plane. The finite-difference forms of the Saint—Venant equations are solved
at a discrete number of points {values of the independent variables x and 1) arranged to form the rectangh-
lar grid shown. Lines parallel to the time axis represent locations along the channel, and those paraliel to
the distance axis represent times (from Fread (1974)).

i = N. This yields 2N-2 equations. There aré two unknowns at each of the N grid points (Q and £),
so there are 2N unknowns in all. The two additional equations required to complete the solution
are supplied by the upstream and downstream boundary conditions. The upstream boundary con-
dition is usually specificd as a known inflow hydrograph, while the downstream boundary condi-
tion can be specified as a known stage hydrograph, a known discharge hydrograph, or a known
relationship between stage and discharge, such as a rating curve. The U.S. National Weather
Service FLDWAV model (hsp.nws.noaa.govloh/hri/rvmech) uses the above to describe implicit
dynamic wave model formulation.

-

PROBLEMS

9.1.1 The storage-outflow characteristics for a reservoir are
given below. Determine the storage-outflow function 25/Ar + 0
versus  for each of the tabutated values using Ar = 1.0 hr. Plot
a graph of the storage-outflow function.
Storage (106 m®) 70 80

Outflow (m>) 0 50

100
350

115
T00

85
150

9.2.1 Route the inflow hydrograph given below through the .

reservoir with the storage-outflow characteristics given in prob-
lem 3.6.1 using the level pool method. Assume the reservoir has
an initial storage of 70 X 106 m™.

Time (h) o 1 2 3 4 5 6 7 8
Inflow (m¥s) 0 40 60 150 200° 300 250 200 180
Time (h) 9 10 i1 12 13 14 15 16

Inflow(m¥s) 220 320 400 280 190 150 50 O

9.2.2 Rework problem 9.2.1 assuming the reservoir storage is
initially 80 X 10° m. :

9.2.3 Write a computer program to solve problems 9.2.1 and
9212,

924 Rework example 9.1.1 using a 1.5-acre detention basin.

9.2.5 Rework example 9.1.1 uging a triangular inflow hydro-
graph that increases linearly from zero to a peak of 90 cfs at 120
min and then decreases linearly to a zero discharge at 240 min.
Use a 30-min routing interval.

9.2.6 Rework example 9.2.2 using At = 2 hs.
9.2.7 Rework example $.2.2 assuming X = 0.3 hrs.
9.3.1 Reéwork example 9.2.2 assuming K = 1.4 hr.




£
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9.3.2 Calculate the Muskingum routing K and number of routing
steps for a 1.25-mi long channel. The average cross-section
dimensions for the channel are a base width of 25 ft and an aver-
age depth of 2.0 ft. Assume the channel is rectangular and has
Manning’s n 0.04 and a slope of 0.009 fu/ft.

9.3.3 Route the following upstream inflow hydrograph through a
downstream flood control channel reach using the Muskingum
method. The channel reach has a k=25 hrand X=0.2. Use a
routing interval of 1 hr.

Time (h) 1 2 3 4 5 6 7
Inflow (cfs) 90 140 208 320 440 550 640
Time (h) 8 9 10 11 12 13 14
Inflow (cfs) 680 690 630 570 470 390

Time (h) 15 16 17 18 19 20

Inflow (cfs) 330 250 180 130 100 90

9.3.4 Use the U.S. Army Corps of Engineers HEC-1 computer
program to solve Problem 9.3.3.
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HAND OUT 19: Overview of hydraulic routing (Chapter 6 of our syllabus).
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HAND OUT 20: Overview of hydrologic and hydraulic routing (Chapter 6 of
our syllabus). Source: U.S. Corps of Engineers.
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Chapter 9
Streamflow and Reservoir Routing

9-1. General

a.  Routing is a process used to predict the temporal
and spatial variations of a flood hydrograph as it moves
through a river reach or reservoir. The effects of storage
and flow resistance within a river reach are reflected by
changes in hydrograph shape and timing as the floodwave

- moves from upstream to downstream. Figure 9-1 shows

the major changes that occur to a discharge hydrograph as
a floodwave moves downstream.

b, In general, routing techniques may be classified
into two categories: hydraulic routing, and hydrologic
routing. Hydraulic routing techniques are based on the
solution of the partial differential equations of unsteady
open channel flow. These equations are often

EM 1110-2-1417
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referred to as the St Venant equations or the dynamuc
wave equations. Hydrologic routing employs the continu-
ity equation and an analytical or an empirical relationship
between storage within the reach and discharge at the

outlet.

¢. Flood forecasting, reservoir and channel design,
floodplain studies, and watershed simulations generally
utilize some form of routing. Typically, in watershed
simulation studies, hydrologic routing is utilized on a
reach-by-reach basis from upstream fo downstream. For
example, it is often necessary to obfain a dischaige hydro-
graph at a point downsiream from a location where a
hydrograph has been observed or computed. For such
purposes, the upstream hydrograph is routed through the
reach with a hydrologic routing technique that predicts
changes in hydrograph shape and timing. Local flows are
then added at the downstream location to obtain the total
flow hydrograph. This type of approach is adequate as
long as there are no significant backwater effects or.

Inflow Hydrograph
At Pgint A

AN

Water
Entering
Storags

MG IB2ITOW—=0

Travel
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ﬂ Attenuation
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At Point B

~

Water
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Figure 9-1. Discharge hydrograph routing effects
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discontinuities in the water surface because of jumps or g = lateral inflow per unit length of channel

bores. When there are downstream controls that will have

~an effect on the routing process through an upstream §, = friction slope

reach, the channel configuration should be treated as ome

continuous system. This can only be accomplished with a §, = channel bed slope
hydraulic routing technique that can incorporate backwater :

‘effects as well as internal boundary conditions, such as g = gravitational acceleration

those associated with culverts, bridges, and weirs.
Solved together with the proper boundary conditions,

d This chapter describes several different hydraulic Equations 9-1 and 9-2 are the complete dynamic wave
and hydrologic routing techniques. Assumptions, limita- equations. The meaning of the various terms in the
tions, and data requirements are discussed for each. The dynamic wave equations are as follows (Henderson 1966):

basis for selection of a particular routing technique is

reviewed, and general calibration methodologies are pre- (1) Continuity equation.
sented. This chapter is limited to discussions on 1-D flow

routing techniques in the context of flood-runoff analysis. ) .

The focus of this chapter is on discharge (flow) rather AE = prism storage

than stage (water surface elevation). Detailed presentation
of routing techniques and applications focused on stage dy _
calculations can be found in EM 1110-2-1416. VBE; = wedge storage

9-2. Hydraulic Routing Techniques ay te of ri
— = rale gf rise

a. The equations of motion. The cquations that .
describe 1-D unsteady flow in open channels, the Saint q = lateral inflow per unit length
Venant equations, consist of the continuity equation,

¢ ™ Eguation 9-1, and the momentum equation, Equation 9-2.

& 3 ]
.../ The solution of these equations defines the propagation of (2) Momentum equation.
a floodwave with respect to distance along the channel )
and time. ' S, = friction slope (frictional forces)
4 BE . VB _E_)Z ¢ B E)i -q ©-1) S, = bed slope (gravitational effects)
dx ox ot
%}i = pressure differential
: X
s =5 - Y 197 0-2) i~
dx g ox g ot 22 = convective acceleration
g ox
where
iEK = Jocal acceleration
. gt
A4 = cross-sectional flow area
I = average velocity of water (3) Dynamic wave equations. The dynamic wave
equations are considered to be the most accurate and
x = distance along channel comprehensive solution to 1-D unsteady flow problems in
open channels. Nonetheless, these equations are based on
B = water surface width specific assumptions, and therefore have limitations. The
assumptions used in deriving the dynamic wave cquations
y = depth of water are as follows:
¢ = fime




(a) Velocity is constant and the water surface is hori-
zontal across any channel section.

(by All flows are gradually varied with hydrostatic
pressure prevailing at all points in the flow, such that
vertical accelerations can be neglected.

(¢} No lateral secondary circulation oceurs,

(d) Channel boundaries are treated as fixed; therefore,
no erosion or deposition accurs.

(e) Water is of uniform density, and resistance to
flow can be described by empirical formulas, such as
Manning’s and Chezy’s equation.

(f) The dynamic wave equations can be applied to 2
wide range of 1-D flow problems; such as, dam break
floodwave routing, forecasting water surface elevations
and velocities in a river system during a flood, evaluating
flow conditions due to tidal fluctuations, and routing
flows through irmrigation and canal systems. Solution of
the fill cquations is normally accomplished with an
explicit or implicit finite difference technique. The equa-
tions are solved for incremental times {at) and incremen-
tal distances {(ax) along the waterway.

b.  Approximations of the full equations. Depending
on the relative importance of the various terms of the
momentum Equation 9-2, the equation can be simplified

. for various applications.  Approximations to the full

dynamic wave equations are created by combining the
continuity equation with various simplifications of the
momentum equation. The most common approximations
of the momentum equation are:

.= 5 - % _ Vo 19V 9.3
AR T A

Sicady Uniform Flow|
Kinemaiic Wave Approx.

Steady Nonuniform Flow |
Diffusion Wave Approximation

Steady Nonuniform Flow
Quasi-Steady Dynamic Wave Approximation

Linsteady Nonuniform Flow
Full Dynamic Wave Equation
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The use of approximations to the full equations for
unsteady flow can be justified when specific terms in the
momentum equation are small in comparison to the bed
slope. This is best illustrated by an example taken from
Henderson’s  book Open Channel  Flow  (1966).
Henderson computed values for each of the terms on the
right-hand side of the momeuntum equation for a steep
alluvial stream:

Term: s ¥ Yor 1o
¢ dx g dx g of
Magnitude (f/mi): 26 .5 12-.25 05

These figures relate to a very fast rising hydrograph in
which the flow increased from 10,000 to 150,000 cfs and
decreased again to 10,000 ofs within 24 hr. Even in this
case, where changes in depth and velocity with respect to
distance and time are relatively large, the last three terms
are still small in comparison to the bed slope. For this
type of flow situation (steep stream), an approximation of
the full equations would be appropriate. For flatter
slopes, the last three terms become increasingly more
important.

(1) Kinematic wave approximation. Kinemaiic flow
occurs when gravitational and frictional forces achieve a
balance. In reality, a true balance between gravitational
and frictional forces never occurs. However, there are
flow situations in which gravitational and frictional forces
approach an equilibrium. For such conditions, changes in
depth and velocity with respect to time and distance are
small in magnitude when compared to the bed slope of
the channel. Therefore, the terms to the right of the bed
slope in Equation 9-3 are assumed to be negligible. This
assumption teduces the momentum equation fo the
following:

S =S (9-4)

Equation 9-4 essentially states that the momentum of the
flow can be approximaied with a uniform flow assump-
tion as described by Manning's or Chezy’s equation.
Manning’s equation can be written in the following form:

O=ad" 9-5)




"/-:M'm

)
o

.
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where ¢ and m are related to flow geometry and surface

 roughness

Since the momentum equation has been reduced to a
simple functional relationship between area and discharge,
the movement. of a floodwave is described solely by the
continuity equation, written in the following form:

L 90 _
T ox 1

{9-6)

Then by combining Equations 9-5 and 9-6, the governing
kinematic wave equation is obtained as:

a4

P ©-7)

1 ox

dlffuswn _|ust smlple transiatmn o'athe
time. ~ The l(mematlc wave. equatlons are usully solved
by explicit -or implicit finite difference technigques. Any
attenuation of the peak flow that is computed using the
kinematic ‘wave-equations is due to errors inherent in the
finite difference solution scheme.

(a) The application of the kinematic wave equation is
limited to flow conditions that do not demonstrate appre-
ciable hydrograph attenuation. In general, the kinematic
wave approximation works best when applied to steep
(10 f/mile or greater), well defined channels, where the

‘floodwave is gradually varied.

(b} The kinematic wave approach is often applied in
urban areas because the routing reaches are generally
shott and well defined (i.e., circular pipes, concrete lined
channels, etc.).

(¢) The kinematic wave equations cannot handle
backwater effects since, with a kinematic model flow,
disturbances can only propagate in the downsiream direc-
tion. All of the terms in the momentum equation that are
used to describe the propagation of the floodwave
upstream (backwater effects} have been excluded.

(2) Diffusion wave approximation. Another common
approximation of the full dynamic wave equations is the
diffusion wave analogy. The diffusion wave model util-
izes the continuity Equation 9-1 and the following simpli-
fied form of the momentum equation:

9-4

. (9-8)

The diffusion wave model is a significant improvement
over the kinematic wave model because of the inclusion
of the pressure differential term in Equation 9-8. This
term allows the diffision model to describe the attenua-
tion (diffusion effect) of the floodwave. It also altows the
specification of a boundary condition at the downstream
extremity of the routing reach to account for backwater
effects. It does not use the inertial terms (last two terms)
from Equation 9-2 and, therefore, is limited to slow to
moderately rising floodwaves (Fread 1982). However,
most natural floodwaves can be described with the diffu-
sion form of the equations.

(3) Quasi-steady dynamic wave approximation. The
third simplification of the full dynamic wave equations is
the quasi-steady dynamic wave approximation.  This
model utilizes the continuity equation, Equation 9-1, and
the following simplification of the momentum equation:

s -8 -2 Yo
o

2 (9-9)
g ox

In general, this simplification of the dynamic wave cqua-
tions is not used in flood routing. This form of the
momentum equation is more commonly used in steady
flow-water surface profile computations. In the case of
flood routing, the last two terms on the momentum cqua-
tion are ofien opposite in sign and tend to counteract cach
other {Fread 1982). By including the convective accelera-
tion term and not the local acceleration term, an error is
introduced. This error is of greater magnitude than the
error that results when both terms are excluded, as in the
diffusion wave model. For steady flow-water surface
profiles, the last term of the momentum equation (changes
in velocity with respect to time) is assumed to be zero.
However, changes in velocity with respect to distance are
still very important in the calculation of steady flow-water

surface profiles.

. Data requirements. In general, the data require-
ments of the various hydraulic routing techniques are
virtually the same. However, the amount of detail that is
required for each type of data will vary depending upon
the routing technique being used and the situation it is
being applied to. The basic data requirements for hydrau-
lic routing techniques are the following: '




{1) Flow data (hydrographs).

(2} Channel cross sections and reach lengths.

(3) Roughness coefficients.

{4) Initial and boundary conditions.

(a) Flow data consist of discharge hydrographs from
upstream locations as well as lateral inflow and tributary

flow for all points along the stream.

~ (by Channel cross sections are typically surveyed
sections that are perpendicular to the flow lines. Key

" issues in selecting cross sections are the accuracy of the

surveyed data and the spacing of the sections along the
stream. [f the routing procedure is utilized to predict
stages, then the accuracy of the cross-sectional dimensions
will have a direct effect on the prediction of the stage. If
the cross sections are used only to route discharge hydro-
graphs, then it is only important to ensure that the cross
section is an adequate representation of the discharge
versus flow area of the section. Simplified cross-sectional
shapes, such as $-point cross sections or trapezoids and
rectangles, are often used to fit the discharpe versus flow
area of a more detailed section. Cross-sectional spacing
affects the level of detail of the results as well as the
accuracy of the numerical solution to the routing equa-
tions. Detailed discussions on cross-sectional spacing can
be found in the reference by the Hydrologic Engineering
Center (HEC) (USACE 1986).

{c) Roughness coefficients for hydraulic routing
models are typically in the form of Manning’s © values.
Manning’s coefficients have a direct impact on the travel
time and amount of diffusion that will occur when routing
a flood hydrograph through a channel reach. Roughness
coefficients will also have a direct impact on predicted
stages.

(d) All hydraulic models require that initial and boun-
dary conditions be established before the routing can
commence. Initial conditions are simply stated as the
conditions at all points in the stream at the beginning of
the simulation. [nitial conditions are established by speci-
fying a base flow within the channel at the start of the
simulation. Channel depths and wvelocities can be calcu-
lated through steady-state backwater computations or a
normal depth equation ({e.g., Manning's equation).
Boundary conditions are known rclationships between
discharge and time and/or discharge and stage. Hydraulic
routing computations require the specification of

upstream, downstream, and internal boundary conditions

EM 1110-2-1417
31 Aug 94

o solve the equations. The upstream boundary condition
is the discharge {or stage) versus time relationship of the
hydrograph to be routed through the reach. Downstream
boundary conditions are usvally established with a steady-
state rating curve (discharge versus depth relationship) or
through normal depth calculations (Manning’s equation).
Internal boundary conditions consist of lateral inflow or
tributary flow hydrographs, as well as depth versus dis-
charge relationships for hydraulic structures within the
river reach.

9-3. Hydrologic Routing Techniques

Hydrologic routing employs the use of the continuity
equation and either an analytical or an empirical relation-
ship between storage within the reach and discharge at the
outlet. In its simplest form, the continuity equation can
be written as inflow minus outflow equals the rate of
change of storage within the reach:

[-0= AS (9-10)
At

where

[ =the average inflow to the reach during A¢

O = the average outflow from.the reach during At
§ = storage within the reach

a. Modified puls reservoir routing.

(1) One of the simplest routing applications is the
analysis of a floodwave that passes through an
unregulated reservoir (Figure 9-2a). The inflow hydro-
graph is known, and it is desired to compute the outflow
hydrograph from the reservoir. Assuming that all gate
and spillway openings arc fixed, a unique relationship
between storage and outilow can be developed, as shown
in Figure 9-2b.

(2) The equation defining storage routing, based on
the principle of conservation of mass, can be written in
approximate form for a routing interval az. Assuming the
subscripts “1” and “2” denote the beginning and end of
the routing interval, the equation is wriften as follows:

L+L S-S5 ©-11)
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Figure 9-2. Reservoir storage routing

The known values in this equation are the inflow hydro-
graph and the storage and discharge at the beginning of
the routing interval. The unknown values are the storage

rf” ™y and discharge at the end of the routing interval. With two
\ j unknowns (O, and S,} remaining, another relationship is

required to obtain a solution. The storage-outflow rela-
tionship is normally used as the second equation. How
that refationship is derived is what distinguishes various
storage routing methods.

(3) For an uncontrofled reservoir, outflow and water
in storage are both uniquely a function of lake elevation.
The two functions can be combined to develop a storage-
outflow relationship, as shown in Figure 9-3. Elevation-
discharge relationships can be derived directly from
hydraulic equations. Elevation-storage relationships are
derived through the use of topographic maps. Elevation-
area relationships are computed first, then either average
end-area or conic methods are used to compute volumes.

(4) The storage-outflow relationship provides the out-
fiow for any storage level. Starting with a nearly empty
reservoir, the outflow capability would be minimal. If the
inflow is less than the outflow capability, the water would
flow through. During a flood, the inflow increases and
eventually exceeds the outflow capability. The difference
between inflow and outflow produces a change ia storage.
In Figure 9-4, the difference between the inflow and the
outflow (on the rising side of the outflow hydrograph)
represents the volume of water entering storage.

(5) As water enters storage, the outflow capability
increases because the pool fevel increases. Therefore, the
outflow increases. This increasing outflow with increas-
ing water in storage continues until the reservoir reaches a
maximum level. This will occur the moment that the
outflow equals the inflow, as shown in Figure 94. Once
the outflow becomes greater than the inflow, the storage
level will begin dropping. The difference between the
outflow and the inflow hydrograph on the recession side
reflects water withdrawn from storage.

(6) The modified puls method applied te reservoirs
consists of a repetitive solution of the continuity equation.
It is assumed that the reservoir water surface remains
horizontal, and therefore, outflow is a unigue function of
reservoir storage. The continvity equation, Equation 9-11,
can be manipulated to get both of the unknown variables
on the lefi-hand side of the equation:

S G| (S, 00, hth o
At 2 A2 ! 2

Since I is known for all time steps, and O, and §; are
known for the first time step, the tight-hand side of the
equation can be calculated. The left-hand side of the
equation can be sofved by trial and error. This is accom-
plished by assuming a value for either S, or O,, obtaining
the correspending value from the storage-outflow relation-
ship, and then iterating until Equation 9-12 is satisfied.
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Figure 9-4. Reservoir routing example

Rather than resoit to this iterative procedure, a value of (Viessman etal. 1977). The numerical integration of
af is selected and points on the storage-cutflow curve ate Equation 9-12 and Figure 9-5 is illustrated as an example
replotted as the “storage-indication” curve shown in in Table 9-1. The stepwise procedure for applying the
Figure 9-5. This graph allows for a direct determination modified puls method to reservoirs can be summarized as
of the outflow (0,) once a value of storage indication follows:

(S,/at + 0,/2) has been calculated from Equation 9-12
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Figure 9-5. Storage-indication curve

{a) Determine a composite discharge rating curve for
all of the reservoir outlet structures.

{b) Determie the reservoir storage that corresponds
with each elevation on the rating curve for reservoir out-
flow.

(¢} Select a time step and construct a storage-indica-
tion versus ouiflow curve {(8/af) + ((0/2)] versus O.

{d} Route the inflow hydrograph through the reservoir
based on Equation 9-12 and the storage-indication curve.

(e) Compare the results with historical events to
verify the model.

b, Modified puls channel routing. Routing in natural
rivers is complicated by the fact that storage in a river
reach is not a function of outflow alone. During the pass-
ing of a floodwave, the water surface in a channel is not
uniform.  The storage and water surface slope within a
river reach, for a given outflow, is greater during the
rising stages of a floodwave than during the falling
(Figure 9-6). Therefore, the relationship between storage

and discharge at the outlet of a channel is not a unique
relationship, rather it is a looped relationship. An exam-
ple storage-discharge function for a river is shown in

Figure 9-7.

(1} Application of the modified puls method to
rivers. To apply the modified puls method to a channel
routing problem, the storage within the river reach is.
approximated with a series of “cascading reservoirs” (Fig-
ure 9-8). Each reservoir is assumed to have a level pool
and, therefore, a unique storage-discharge relationship.
The cascading reservoir approach is capable of approxi-
mating the looped storage-outflow effect when evaluating
the river reach as a whole. The rising and falling flood-
wave is simulated with different storage levels in the
cascade of reservoirs, thus producing a looped -storage-
outflow function for the total river reach. This is depicted
graphically in Figure 9-9.

the storage-outflow

(2} Determination of
relationship.

{) Determining the storage-outflow relationship for
a river reach is a critical part of the modified puls proce-
dure. In river reaches, storage-outflow relationships can
be determined from one of the following:

= steady-flow profile computations,
- observed water surface profiles,
+ normal-depth calculations,

= observed inflow and outflow hydrographs, and
«  optimization techniques applied to observed
inflow and outflow hydrographs.

(b) Steady-flow water surface profiles, computed
over a range of discharges, can be used to determine
storage-outflow relationships in a river reach
{Figure 9-10). In this illustration, 2 known hydrograph at
A is to be routed to location B. The storage-outflow
relationship required for routing is determined by comput-
ing a series of water surface profiles, corresponding to 2
range of discharges. The range of discharges should
encompass the range of flows that will be routed through
the river reach. The storage volumes are computed by
multiplying the cross-sectional area, under a specific flow
profile, by the channel reach lengths. Volumes are
calculated for each flow profile and then plotted against




