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HAND OUT 2t Jmportance of water resources (Chapter 1 of our syllabus)
Source: Mays, L. (2006). “Water resources engineering” John Wiley and Sons




Chapter 1

1.1 BACKGROUND

Introduction

Water resources engineering {and management) as defined for the purposes of this book includes
engineering for both water supply management and water excess management (see Figure 1.1.1).
This book does not cover the water guality management (or environmentel restoration) aspect of
water resources engineering. The two major processes that are engineered are the hydrologic
processes and the hydraulic processes. The common threads that relate to the explanation of the
hydrologic and hydraulic processes are the fundamentals of fluid mechanics. The hydraulic process-
es include three types of flow: pipe (pressurized) flow, open-channel flow, and groundwater flow.
The broad topic of water resources includes areas of study in the biological sciences, enginee-
ing, physical sciences, and social sciences, as illustrated in Figure 1.1.1. The arcas in biological
sciences range from ecology to zoology, those in the physical sciences range from chemistry to
meteorology to physics, and those in the social sciences range from economics to sociology. Water
resources engineering as used in this book focuses on the engineering aspects of hydrology and
hydraulics for water supply management and water excess management. '

WATER RESOURCES MANAGEMENT

Water supply Water excess Envirenmental
management management restoration

{ ' {
I | I

Biological sciences Engineering Physical sciences Social sciences
Ecclogy Agriculture Chemistry ‘Economics
Entomology Chemical Climatology Education

Fisheries Civil Computer science Geography

Faod technology Environmental Geology History

Forestry Industrial Hydrology Law

Horticulture Mechanical Mathematics Planning

Limnology Systems Meteorology Political science
Marine science Oceanography Public administration
Microbiology Physics Resource development
Plant science ' Soil science Sociology

Public health Stafistics

Zoology

Figure 1.1.1 Ingredients of water resources management (from Mays (1996)).
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Comparatioe Ireigation Patterns in Upper Egypt and Mesopotamia
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Figure 1.1.2 Comparative irrigation networks in Upper Egypt and Mesopotamia. (a)
Example of linear, basin imigation in Sohag province, ca. AD 1850; (&) Example of
radial canalization system in the lower Nasharawan region southeast of Baghdad,
Abbasid (A.D. 883-1150). (Modified from R. M. Adams (1965), Fig. 9. Same scale as
Egyptian counterpart). (¢) Detail of field canal layout in b. (Simplified from R. M.
Adams (1965), Fig. 10. Figure as presented in Butzer {1976)).

Water resources engineering not only includes the analysis and synthesis of various water prob-
lems through the use of the many analytical tools in hydrologic engineering and hydraulic engi-

neering but also extends to the design aspects.

Water resources engineering has evolved over the past 9,000 to 10,000 years as humans have
developed the knowledge and techniques for building hydraulic structures to convey and store
water. Early examples include irrigation networks built by the Egyptians and Mesopotamians (see
Figure 1.1.2} and by the Hohokam in North America (see Figure 1.1.3). The world’s oldest large
dam was the Sadd-el-kafara dam built in Egypt between 2950 and 2690 B.C. The oldest known
pressurized water distribution (approximately 2000 B.C.) was in the ancient city of Knossos on
Crete (see Mays, 1999, 2000, for further details). There are many examples of ancient water sys-

4

tems throughout the world.
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Figure 1.1.3 Canal building in the Salt River Valley with a stone hoe held in the hand without a handle. These were

the original engineers
clusters of wild huts (from Turney (1922)). (Courtesy of Salt River Project, Phoentx, Arizona.)
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4 Chapter 1 Introduction

1.2 THE WORLD’S FRESHWATER RESOURCES

Y

Among today’s most acute and complex problems are water problems related to the rational use
and protection of water resources (see Gleick, 1993). Associated with water problems is the need
to supply humankind with adequate clean freshwater. Data collected on global water resources by
Soviel scientists are listed in Table 1.2.1. These obviously are only approximations and should not
be considered as accurate (Shiklomanov, 1993). Table 1.2.2 presents the dynamics of actual water
availability in different regions of the world. Table 1.2.3 presents the dynamics of water use in the
world by human activity. Table 1.2.4 presents the annual runoff and water consumption by conti-
nents and by physiographic and economic regions of the world.

Talﬂe 1.2.1 Water Reserves on the Earth

Percentage of
global reserves

Distribution —
area Volume Laver Of total  Of fresh-
(1P km?  (10° kmd) {m) water water
World ocean 361,300 1,338,000 3,700 96.5 —
Groundwater 134,800 23,400 174 1.7 —
Freshwater 10,530 78 0.70 301
Soil meisture i6.5 02 0.001. 0.05
Glaciers and permanent snow cover 16,227 24,064 1,463 1.74 68.7
Antarctic 13,980 21,600 1,546 1.56 61.7
Greenland 1,802 2,340 1,298 0.17 6.68 -
Arctic islands 226 835 369 0.006 0.24
Mountainous regions 224 40.6 181 0.003 0.12
Ground ice/permafrost 21,000 300 14 0.022 0.86
Water reserves in lakes 2,058.7 17604 857 0.013 —
Fresh 1,2364 91 73.6 0.007 0.26
Saline 8223 854 1038 0.006 —
Swamp water 2,682.6 1147 4.28 0.0008 0.03
River flows 148,800 2.12 0.014 0.0002 0.006
Biological water 510,000 1.12 0.002 0.0001 0.003
Atmospheric water 510,000 12.9 0.025 0.001 0.04
Total water reserves 510,000 1,385,984 2,718 100 —
Total freshwater reserves 148,800 35,029 235 2.53 100

Source: Shiklomanov (1993).

Table 1.2.2 Dynamics of Actual Water Availability in Different Regions of the World

Actual water availability (10° m? per year per capita)

Area E

Continent and region {10 km?) 1956 1660 1970 1980 2000
Europe 10.28 59 54 4.9 4.6 4.1
North 1.32 392 36.5 339 327 30.9
Central 1.86 3.0 2.8 2.6 24 23
South 1.76 38 35 3.1 2.8 2.5
European USSR (North) 1.82 ' 338 20,2 26.3 24.1 209
Buropean USSR (South) 3.52 4.4 4 3.6 3.2 2.4
" North America 24.16 37.2 30.2 25.2 21.3 17.5

Canada and Alaska 13.67 384 294 246 219 189
United States 7.83 10.6 8.8 16 6.8 56
2.67 22.7 17.2 12.5 94 71

Central America




1.2 The World’s Freshwater Resources  §
Table 1.2.2 Dynamics of Actual Water Availability in Different Regions of the World (continued)
Area Actual water availability (10° m® per year per capita)
Continent and region {108 kn?) 1950 1960 1970 1980 2000
Africa 30.10 20.6 16.5 12.7 9.4 51
North 8.78 2.3 1.6 1.1 0.69 021
B South 5.11 12.2 10,3 7.6 57 3.0
g East 5.17 5.0 12 92 6.9 37
' West . 6.96 20.5 16.2 124 9.2 49
Central . 4.08 92.7 79.5 59.1 46.0 254
Asia 44.56 9.6 7.9 6.1 5.1 3.3
North China and Mongoha .9.14 38 3.0 23 1.9 1.2
South . 449 4.1 34 2.5 2.1 1.1
West 6.82 6.3 472 33 2.3 L3
South-east ' 717 ¢ 13.2 11.1 8.6 7.1 4.9
Central Asia and Kazakhstan 243 7.5 35 33 20 0.7 -
Siberia and Far East 14.32 124 112 102 96.2 95.3
Trans-Caucasus 0.19 8.8 6.9 54 4.5 30
South America 17.85 165 80.2 61.7 48.8 283
North 255 179 128 94.8 72.9 374
Brazil 8.51 115 86 64.5 50.3 322
West 2.33 979 77.1 58.6 458 25.7
Ceniral 4.46 34 27 239 20.5 104
Australia and Oceania 8.59 112 91.3 74.6 64.0 50.0
¥ Australia 7.62 35.7 284 23 19.8 150
” Oceania 1.34 161 132 108 24 735
: Source: Shiklomanov (1993).
7 E Table 1.2.3 Dynamics of Water Use in the World by Human Activity
i 1980 1990° 2000°
i 1900 1940 195¢ 1960 1970 1975
E (km® per (knt per (km® per (kut’ per (km? per {km’ per (km’® per (km® per (km?® per
;f Water users® year) year) year) year) year) year) year) (%} year) (%) year) (%)
£
Agriculture
Withdrawal 525 893 1,130 1,550 1,850 2,050 2,290 69.0 2,680 64.9 3,250 62.6
Consamption 409 679 859 1,180 1,400 1570 1,730 887 2,050 869 2,500 86.2
Industry
Withdrawal 372 124 178 330 540 612 710 21.4 973 23.6 1,280 247
Consumption 35 97 14.5 248 38.0 472 619 32 885 38 117 40
Municipal supply
Withdrawal 16.1 36.3 52.0 82.0 130 161 200 6.0 300 7.3 441 85
Consumption 4.0 9.0 14 20.3 29.2 34.3 41.1 2.1 524 22 64.5 22
Reservoirs
Withdrawal 0.3 37 6.5 23.0 66.0 103 120 36 170 4.1 220 43
Consumption 03 37 6.5 210 66.0 103 120 6.2 170 72 220 16
Total (rounded off) )
Withdrawal 579 1,060 1,360 1,990 2,590 2930 3,320 100 4,130 100 5,150 100
Consumption 417 701 804 1,250 1,540 1,760 1,950 100 2,360 100 2,900 100

2 Total water withdrawal is shown in the first line of each category, consumplive use (irretrievable water loss) is shown in the second line.
b Estimated.

TR TR

Source: Shiklomanov (1993).
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Table 1.2.4 Annual Runoff and Water Consumption by Continents and by Physiographic
and Economic Regions of the World

Mean annual Water consumption (km® per year)
runoff Aridity
" () per  index 1980 1990 2000 -
Continent and region (mm} year) (R/LP) Total kretricvable Total Imretrievable Total Iretrievable
Europe 310 3,210 o 435 127 555 178 673 222
North 430 737 0.6 9.9 1.6 12 20 13 23
Central 380 705° 0.7 141 22 176 28 205 33
South 320 564 14 132 51 184 64 226 73
European USSR (North) 330 601 0.7 18 2.1 24 34 29 5.2
European USSR (South) 150 525 1.5 134 50 159 81 200 108
North America 340 8,200 —_ 663 224 724 255 796 302
Canada and Alaska 390 5,300 0.8 41 8 57 11 97 i5
United States 220 1,700 1.5 527 155 546 171 531 194
Central America 450 1,200 1.2 85 61 120 73 . 168 93
Africa 150 4,570 - 168 129 232 165 317 211
North 17 154 8.1 100 79 125 97 150 112
South 68 349 2.5 23 16 36 20 63 34
East 160 809 22 23 18 32 23 45 28
West 190 1,350 25 19 i4 33 23 51 34
Central 470 1,909 0.8 2.8 1.3 48 21 84 34
Asia 330 14,410 B 1,910 1,380 2,440 . 1,660 3,140 2,020
North China and Mongolia 160 1,470 22 395 270 527 314 671 360
South 490 2,200 1.3 668 518 857 638 1,200 865
West 72 490 2.7 192 147 220 165 262 190
South-east 1,090 6,650 0.7 461 337 609 399 741 435
Central Asia and Kazakhstan 70 170 3.1 135 87 157 109 i74 128
Siberia and Far East 230 3,350 0.9 a4 11 40 17 49 25
Trans-Caucasus 410 77 1.2 24 14 26 I8 33 21
South America 660 11,760 — 111 71 150 86 216 116
Northern area 1,230 3,126 0.6 15 il 23 16 33 20
Brazil 720 6,148 0.7 23 10 23 14 48 21
West 740 1,714 1.3 40 30 45 12 64 44
Centrat 170 812 20 33 20 418 24 70 31
Australia and Oceania 270 2,390 29 15 38 C17 47 22
Australia 39 301 4.0 27 £ 13 34 16 42 20
Qcecania 1,560 2,090 0.6 24 1.5 33 18 4.5 23
Land area (rounded off) — 44,500 — 3,320 1,450 4,130 2,360 5190 2,900

Source: Shiklomanov (1993).

L3 WATER USE IN THE UNITED STATES

Duziegielewski et al. (1996) define water use from a hydrologic perspective as all water flows that
are a resolt of human intervention in the hydrologic cycle. The National Water Use Information
Program (NWUTI Program), conducted by the United States Geological Survey (USGS), used this
perspective on water use in establishing a national system of water-use accounting. This account-
ing system distinguishes the following water-use flows: (1) water withdrawals for off-stream pur-
poses, (2) water deliveries at point of use or quantities released after use, (3} consumptive use, (4)
conveyance loss, (5) reclaimed wastewater, (6) return flow, and (7) in-stream flow (Solley et al.,
1993). The relationships among these human-made flows at various points of measurement are
illustrated in Figure 1.3.1. Figure 1.3.2 illustraies the estimated water use by tracking the sources,
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HAND OUT 3: Algorithm for the Computer Problem 1
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HAND OUT 4: Classification of modeling approximations (Chapter 1 of our
syllabus)
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- Examples of modeling:
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HAND OUT 5: The Moody diagram (Chapter 1 of our syllabus)
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HAND OUT 6: Methods for obtaining roots of algebraic equations (Chapter
2 of our syllabus). Source: Alexandrou, A. (2001). “Principles of fluid mechanics.”
Prentice Hall '
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Chapter 13 « Fundamentals of Computational Fluid Dynamics

13.1

and ideas are developed in sufficient depth so that the techaiques can be readily used in
practical problems. .

Algebraic Equations

. As encountered in several cases, mathermatical models often reduce to single algebraic

equations whose solution must be obtained numerically by iteration. Recall, for instance,
from Chapter 8 that the friction factor couid be obtained by using the Colebrook formula

L e/D . 251
77 08691( +Ref) (13.1)

Since f appears tn both sides of the equation, the solution must be obtained numerically.
Similarly, in Prandt-Meyer expansion, when the flow tums through a total angle v,
the resulting Mach number M is a complicated function given by

vy +1 fy =1
= %mn-l ;}:—4_—[(M2-l)ftan‘l\/M2—l. (13.2)

The solution to this equation must also be obtained numerically.
Another example is the case of oblique shocks in which the geometry of the shock -

as a function of the incoming M is given by

pmbownt]- L (rolaa, 2 1 (13.3)
- sin 6 cos & y+l v+ 1M} , '

Given the complexity of the expression, the angle of the shock 6 as a function of the Mach
number M and deflection angle’ f must be found numerically.

13.1.1 Root of Equations

Consider a general algebraic equation of the form

y=7rx).
For most of such equations, the final objective is to find the root of the equation— that
15, the value {or values) of the unknown x; that satisfies .
F=y—f(a)=0. (134)

The problem is shown schematically in Figure 13.3. As shown in the figure, depending
on the order of F, the function F can have multiple solutions. An obvious choice (o
find the roots of Bquation (13.4) is to start guessing values of x; until we find those that
satisfy F (x;) = 0. However, this approach can be inefficient and lengthy. Fortunatcly, the
search for the roots can be accelerated by using a nwmber of numerical procedures. These
methods can also be implemented easily in computer form. We review (wo such methads:
(a) the bisection method and (b) the Newton-Raphson method.

Bisection Method

The bisection method formalizes the search for the root that lies in the range of (Xmin»
X ), Where Xpin , and Xpq, are inttial limits set by the user. During the iteration procedure,
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v SN/
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FIGURE 13.3 Multiple roots of a function.

the estimate for the root xg is assumed to be the midpoint of the current range Xy =

M, while the limits x,.;, and xna are updated depending on the sign of [ (xg)

using
If Flxp) >0 xpin = xg,

and
If #(xg) <0  Xpar = xg.

However, the above update is not unique and depends on the functional form of F. For
instance, the proper update may be the opposite —that is,

IF Flxg) > 0 xmax = Xy,

and

If Fxg) <0 xpn = x,.
The proper criterion for updating the range must be determined on 2 case-by-case basis,
by keeping track of x,: if x; between iterations remains unchanged, the criterion must be
reversed. :
The procedure is terminated when |F (xz)] =< €, where € is a predetermined small
number typically of the same order as the machine accuracy. In general, the method works
well and yields the root of the expression provided the range within which the solution
fies is known.

ion factor by solving
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Newton-Raphson Method

The Newton-Raphson method is based on Taylor's expaosion series: if x; is an esum
for the root x., the function expanded around x; is then given as

F(x,) = F(x;) -+ F'O) dx + F"(e)(dx)* + -

where primes such as F' denote differentiation with respect to x. ,

By definition, if x, is the root of F(x), then F(x,) — 0. Therefore, by conmdcnn
only the first two terms of the foregoing series, an appropriate comection dx.= x; ) —
of the current estimate x; is given as

_ Fx)
dx = xpp —x; =~ -
) [ Fiixg)

As shown in Figure 13.4, geometrically the method is equivalent to approximating the
function by a linear function using the local tangent. Formally, then, using an initial
estimate of x;, the iteration proceeds by correcting the estimate according to

xipt = xp — 2D
T Py
until {x; | — x| < €, where ¢ is again a small tolerance number (usually 1079),

In general, the method works very well having one of the fastest convergence rates
(quadratic). However, the method has two limitations: {a) unless the initial guess is suf-
ficiently close to the root, there is no guarantee that the procedure will converge; and
(b} when F' =0, the method breaks down.

X x4

Az

FIGURE 13.4 Geometric description of the Newton-Raphson method.
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13.1.2 Numerical integration

In many fluid problems, the solution (o
2 certain domain. For instance, in hydr

FIGURE 13.5 Schematic of numerical integration,




HAND OUT 7: Bracketing methods (Chapter 2 of our syllabus). Source:
Chapra, S. C., and Canale, R. P. (2006). “Numerical methods for engineers.”
McGraw-Hill, fifth edition.




112

5.1

Bracketing Methods

This chapter on roots of equations deals with methods that exploit the fact that a funciio;
typically changes sign in the vicinity of a root. These techniques are called bracketin
methods because two initial guesses for the root are required. As the name implies, thes
guesses must “bracket,” or be on either side of, the root. The particular methods describe
herein employ different strategies 1o systematically reduce the width of the bracket an
hence, home 1n on the correct answer.

As a prelude to these techniques, we will briefly discuss graphical methods for depic
ing functions and their roots. Beyond their utility for providing rough guesses, graphic
techniques are also useful for visualizing the properties of the functions and the behav
of the various numerical methods.

GRAPHICAL METHODS

A simple method for oblaining an estimate of the root of the equation f{x) = 0 is to make
plot of the function and observe where it crosses the x axis. This point, which represen
the x value for which f{x) = 0, provides a rough approximation of the root.

The Graphical Approaché

Problem Statement. Use the graphical approach to determine the drag coefficient
needed for a parachutist of mass m = 68.1 kg to have a velocity of 40 m/s after free-fallin
for time £ = 10 s. Note: The acceleration due to gravity is 9.8 m/s%.

Solution. This problem can be solved by determining the root of Eq. (PT2.4) using th
parameters : = 10, g = 9.8, v = 40, and m = 63.1:

B(68.1
f(c) — M(] . e—(c/ﬁS.l)]O) _ 4D
[
or
667.38 :
e}y = (1 — 01088y _ 49 (E5.1.1
C -

Various values of ¢ can be substituted into the right-hand side of this equation to comput
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¢ f(<)
4 34.115
8 17.653
12 6.067
16 ~2.269
20 —8.401

These points are ploited in Fig. 5.1. The resulting curve crosses the ¢ axis between 12 and
16. Visual inspection of the plot provides a rough estimate of the root of 14.75. The valid-
ity of the graphical estimate can be checked by substituting it into Eq. (E5.1.1) to yield

667.38
14.75

which is close to zero. It can also be checked by substituting it into BEq. (PT2.4) along with

the parameter values from this example to give
9.8(68.1)
— { — —(§4.75/68. 1310 — 40.059
7R )

which is very close to the desired fali velocity of 40 m/s.

f14.75) = (1 — g OMBEELTN) 40 = 0.059

FIGURE 5.1
The graphical approach for defermining the roots of an equetion.
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FIGURE 5.2

Wusiration of o number of
general ways thal o root may
occur in an inferval prescribed
by a lower bound x and an
upper bound x,. Pads (o] and
ic] indicate that if bath f{x) and
flx) have the same sign, either
there will be no roofs or there
will be an even number of roots
within the interval. Parls (b} and
(d} indicate that it the funciion
has different signs af the end
points, there will be an odd
number of roots in the interval.

BRACKETING METHODS )

Graphical techniques are of limited practical value because they are not precise. How,
ever, graphical methods can be utilized to obtain rough estimates of roots. These estimatg
can be employed as starting guesses for numerical methods discussed in this and the nex;
chapter.

Aside from providing rough estimates of the root, graphical interpretations are impo;
tant tools for understanding the properties of the functions and anticipating the pitfails o
the numerical methods. For example, Fig. 5.2 shows a number of ways in which roots ca
occur {or be absent) in an interval prescribed by a lower bound x; and an upper bound x,
Figure 5.2b depicts the case where a single root is bracketed by negative and positive value
of f{x). However, Fig. 5.2d, where f(x;) and f{x,) are also on opposite sides of the x axi
shows three roots occurring within the interval. In general, if f(x)) and f(x,) have opposit
signs, there are an odd number of roots in the interval. As indicated by Fig. 5.2a and ¢, if}
f(xp) and f(x,) have the same sign, there are either no rdots or an even number of roots)
between the vatues.

Although these generalizations are usually true, there are cases where they do ng
hold. For example, functions that are tangential to the x axis (Fig. 5.3a) and discontinuou
functions (Fig. 5.3b) can violate these principles. An example of a function that is tangen
tial to the axis is the cubic equation f{x) = (x — 2){(x — 2)(x — 4). Notice that x = 2 make
two terms in this polynomial equal to zero, Mathematically, x = 2 is called a muitiple roo
At the end of Chap. 6, we will present techniques that are expressly designed to locat
multiple roots. :

The existence of cases of the type depicted in Fig. 5.3 makes it difficult to develop gen
eral computer algorithms gnaranteed to locate all the roots in an interval. However, whe
used in conjunction with graphical approaches, the methods described in the folowin

FIGURE 5.3

llustration of some excepiions fo the general cases depicted in
Fig. 5.2. {a) Multiple root that occurs when the funclion is langer-
ticl to the x axis. For this case, although the end poinis are of op-
posile signs, there are an even number of axis infersections for
the interval. (B) Discontinuous function where end points of oppo-
site sign bracket on even number of roots. Special sirategies are
required for determining the roois for these cases.




5.1 GRAPHICAL METHODS 115

sections are extremely useful for solving many roots of equations problems confronted rou-
tinely by engineers and applied mathematicians.
Use of Computer Graphics to Locate Roots

Problem Statement. Computer graphics can expedite and improve your efforts to locate
roots of equations. The function

f(x) = sin 10x + cos 3x

‘has several roots over the range ¥ — { to x = 3. Use computer graphics to gain insight into
the behavior of this function.

Solution.  Packages such as Excel and MATLAB software can be used to generate plots.
Figure 3.4a is a plot of f(x) from x = O to x = 5. This plot suggests the presence of several
roots, including a possible double root at about x = 4.2 where f(x} appears to be tangent to .

¥

IGURE 5.4
e progressive enlargement of f{x] = sin 10x + cos 3x by the computer. Such inferactive graphics
sermiis the analyst to determine that two distinct roots exist between x = 4.2 and x = 4.3,
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the x axis. A more detailed picture of the behavior of f(x) is obtained by changing the plot-
ting range from x = 3 tox = 5, as shown in Fig. 5.4b. Finally, in Fig. 5.4, the vertical scale
is narrowed further to f(x) = —0.15 to J{x) = 0.15 and the horizontal scale is narrowed 1o
x=4.2 t0 x = 4.3. This plot shows clearly that a double root does not exist in this region
and that in fact there are two distinct roots at about x = 4.23 and x = 4.26.

Computer graphics will have great utility in your studies of numerical methods. This
capability will also find many other applications in your other classes and professional
activities as well.

5.2

THE BISECTION METHOD

When applying the graphical technique in Example 5.1, you have observed {Fig. 5.1) that.
Jtx) changed sign on opposite sides of the root. In general, if f{x) is real and continuous jn’
the interval from x; to x, and f(x;) and f(x,) have opposite signs, that is,

fx) f(x) <0 (5.1):
then there is at least one real root between x; and x,.
| Incremental search methods capitalize on this observation by locating an interval
where the function changes sign. Then the location of the sign change (and consequently,
the root) is identified more precisely by dividing the inferval into a number of subintervals. -
Each of these subintervals is searched to locate the sign change. The process is repeated .
and the root estimate refined by dividing the subintervals into finer increments. We will
return to the general topic of incremental searches in Sec. 5.4.

The bisection method, which is alternatively called binary chopping, interval halving, -
or Bolzano’s method, is one type of incremental search method in which the interval is al
ways divided in half. Ii’ a function changes sign over an interval, the function value at th
midpoint is evaluated. The location of the root is then determined as lying at the midpoin
of the subinterval within which the sign change occurs. The process is repeated to obtain
refined estimates. A simple algorithim for the bisection calculation is listed in Fig. 5.5, and
a graphical depiction of the method is provided in Fig. 5.6. The following example goes
through the actual computations involved in the method.

4

FIGURE 5.5

—

Step 1: Choose lower x and uppes x, guesses for the ool such that the funciion changes
sign over the interval. This can be checked by ensuring that flxjfix,) < O.
Step 20 An estimate of the root x, Is determined by

Xk X,
%=
Step 3: Make the following evaluations 1o determine in which subinterval the root lies:
fal IF fixif{x) < O, the root fies in the lower subinterval. Therefore, sel x, = x and
return 1o step 2.
(b # fxifix) > O, the roof lies in the upper subinterval. Therefore, set x = x, and

fel WHxifix) = O, the root equals x;; lerminate the compuiation.

retum o step 2.
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IGURE 5.6
A graphicol depiction of the
* bisection method. This plot

tions from Exomple 5.3.

‘conforms 1o the first three itera-

Bisection

Problem Statement.  Use bisection to solve the same problem approached graphically in
Example 5.1. :

Solution:  The first step in bisection is to guess two values of the unknown (in the present
problem, ¢) that give vatues for f(c) with different signs. From Fig. 5.1, we can see that the
function changes sign between values of 12 and 16. Thetefore, the initial estimate of the

"rool x, lies at the midpoint of the interval

12416
==

14

Xr

This estimate represents a true percent relative error of ¢, = 5.3% (note that the true value
of the root is 14.7802). Next we compute the product of the function value at the lower
bound and at the midpoint:

F12) f(14) = 6.067(1.569) = 9.517

which is greater than zero, and hence no sign change occurs between the lower bound and
the midpoint. Consequently, the root must be located between 14 and 16. Therefore, we
create a new interval by redefining the fower bound as 14 and determining a revised root
estimate as

14416
- =

15

X =

which represents a true percent error of &, = 1.5%. The process can be repeated to obtain
refined estimates. For example, '

F14) f(15) = 1.569(—0.425) = —0.666
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Therefore, the root is between 14 and 15. The upper bound is redefined as 15, and the roe:
estimate for the third iteration is calculated as

4
U413 s

Xy =—

which represents a percent relative error of & = 1.9%. The method can be repeated unul—i :
the result is accurate encugh to satisfy your needs. ¥

In the previous example, you may have noticed that the true error does not decreasé:
with each iteration. However, the interval within which the root is located is halved with
each step in the process. As discussed in the next section, the interval width provides an
exact estimate of the upper bound of the error for the bisection method.

5.2.1 Termination Criteria and Error Estimates

We ended Example 5.3 with the statement that the method could be continued to obtain &7
refined estimate of the root. We must now develop an objective criterion for deciding wher §
to terminate the method. 1

Ant initial suggestlon might be to end the calculation when the tme error falls below ]
some prespecified level. For instance, in Example 5.3, the relative error dropped from 5.3 ‘_'
to 1.9 percent during the course of the computation. We might decide that we should ter-:
minate when the error drops below, say, 0.1 percent. This strategy is flawed because the §
error estimates in the example were based on knowledge of the true root of the function,
This would not be the case in an actual sitnation because there would be no point in usmg f_ :
the method if we already knew the root. E

Therefore, we require an error estimate that is not contingent on foreknowledge of the: ;:;
root. As developed previously in Sec. 3.3, an approximate percent relative eror £, can be-}
calculated, as in [recall Eq. (3.53)] |

new old
X — X,

Ep = 100% ¥ (32

xnew

where x™ is the root for the present iteration and x2!? is the root from the previous iteré-
tion. The absolute value is used because we are usually concerned with the magnitude Of :
¢, rather than with its sign. When &, becomes less than a prespecified stopping criterion & -_:
the computation is ferminated.

Error Estimates for Bisection

Problem Statement. Continue Pxample 3.3 until the approximate error falls below 44
stopping criterion of &, = 0.5%. Use Eq. (5.2) to compute the errors. |

Solution. The results of the first two iterations for Example 3.3 were 14 and 15. Substi-’:g:
tuting these values into Bq. (5.2) yields .

15—14
> 100% = 6.667%

{84l :1
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Recall that the true percent relative ervor for the root estimate of 15 was 1.5%. Therefore,
&, is greater than g,. This behavior is manifested for the other iterations: :

lteration Xf Xy X, £q (%) ot (%)
1 12 i6 14 S 5.279
2 14 e 15 5.667 1.487
3 14 15 14.5 3.448 1.896
4 14.5 15 14.75 1.695 0.204
5 14.75 15 14.875 0840 = 0.64]
b

14.75 14.875’ 14.8125 0.422 0.219

Thus, after six iterations g, finally falls below &, = 0.5%, and the computation can be
terininated.

These results are summarized in Fig. 5.7. The “ragged” nature of the true error is due
to the fact that, forrbisection, the true root can lie anywhere within the bracketing interval.
The true and approximate errors are far apart when the interval happens to be centered on
the true root. They are close when the true root falls at either end of the interval.

Although the approximate error does not provide an exact estimate of the true error,
Fig. 5.7 suggests that ¢, captures the general downward trend of g,. In addition, the plotex-
hibits the extremely attractive characteristic that g, is always greater than &, Thus, when

GURE 5.7

¢ and esiimated errors are
ted versus the number of

rors for the bisection method.
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g, falls below g;, the computation could be terminated with confidence that the root is:
known to be at least as accurate as the prespecified acceptable level.

Although it is always dangerous to draw general conclusions from a single exampl
it can be demonstrated that &, will always be greater than &, for the bisection method, Th
is because each time an approximate root is located using bisection as x, = (x + x,)/2,
we know that the true root lies somewhere within an interval of (x, — x)/2 = Ax/2,
Therefore, the root must lie within +Ax/2 of our estunate (Fig. 5.8). For instance, when,
Example 5.3 was terminated, we could make the definitive statement that

x =145%£05

Because Ax/2 = x™¥ — %9 (Fig. 5.9}, Eq. (5.2) provides an exact upper bound on
the true error. For this bound to be exceeded, the true root would have to fall outside the:
bracketing interval, which, by definition, could never occur for the bisection method. As
illustrated in a subsequent example (Example 5.7), other root-locating techniques do not;
always behave as nicely. Although bisection is generally slower than other methods, the:

FIGURE 5.8

Thres ways in which the interval
may bracket the root. in (o] the
true value lies ot the center of
the inierval, whereas in (b} and
{c) the true value lies near the
extreme. Nolice that the
discrepancy between the froe

value and the midpaint of the in-

terval naver exceeds holf the
interval length, or Ax/2.

FIGURE 5.9

Graphical depiciion of why the
arror estimate for bisection
[Ax/2} is equivalent o the root
aslimate for the present iteration
[x7=+} minus the root estimate for
the previous iterclion (x).
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neatness of its error analysis is certainly a positive aspect that could make it attractive for
certain engineering applications.

Before proceeding to the computer program for bisection, we should note that the
celationships (Fig. 5.9} -

new old __ Xy — Xy
A
and
X, = 5 .

can be substituted into Eq. (3:2) to develop an alternative formulation for the approximate
percent relative error

Xy — X

100% ] (5.3)
Xy + X

fa =

o

This equation yields identical results to Eq. (5.2) for bisection. In addition, it allows us to
calculate an error estimate on, the basis of our initial guesses—that is, on our first itera-
tion. For instance, on the first iteration of Example 5.2, an approximate error can be
computed as . ‘-

16 —-12
16 412
Another benefit of the bisection method is that the number of iterations required to at-

tain an absolute error can be computed a priori—that is, before starting the iterations. This
can be seen by recognizing that before starting the technique, the absolute error is

10% = 14.29%

-

o__ 0. 0_ 0
E, =x, —x; = Ax

where the superscript designates the iteration. Hence, before starting the method, we are at
the “zero iteration.” After the first iteration, the error becomes

| AxY
Eq=—
Because each succeeding iteration halves the error, a general formula relating the error and
the number of iterations, n, is

g Ax® 5.4
[ pi (3' )
If £, 4 1s the desired error, this equation can be solved for
log{Aax®/E, Ax?
n = ——CL/—A) = log, a (3.5)
log 2 E,q

Let us test the formula. For Example 5.4, the initial interval was Axy = 16 — 12 = 4.
After six iterations, the absolute error was

14,875 — 14.75|

“a = 0.0625
2
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We can substitule these values into Eq. (5.5) to give

log(4/(.0625)
= ———" =0
log 2

Thus, if we knew beforehand that ap error of less than 0.0625 was acceptable, the formulaj
tells us that six iterations woulid yield the desired result. :

Although we have emphasized the use of relative errors for obvious reasons, there willj
be cases where (usually through knowledge of the problem context) you will be able to
specify an absolute error. For these cases, bisection along with Eq. (5.5) can prov;de a4
useful root-locarton algorithm. We will explore such applications in the end- of-chapter
problenis.

5.2.2 Bisection Algorithm

The algerithm in Fig. 3.5 can now be expanded to include the error check (Fig. 5.10). Thfﬁi :
algorithm employs user-defined functions to make root location and function evaluation 8
more efficient. In addition, an upper limit is placed on the number of iterations. Finally, ang
error check is included to avoid division by zero during the error evaluation. Such would
be the case when the bracketing interval is centered on zero. For this sitvation Eq. (5.2) be: §
comes infinite. If this occurs, the program skips over the error evaluation for that iteration 3

The algorithm in Fig. 5.10 1s not user-friendly; it is designed strictly to come up w1th‘f :
the answer. In Prob. 5.14 at the end of this chapter, you will have the task of making it eas- _: '
ter to use and understand. :

FIGURE 5.10
Pseudacode for function 1o
implement bisaction.

FUNCTION Bisect{xi, xu, es, imax, xr, iter, ea}
iter = ¢
oo
xrold = xr
xro= {xl 4+ xu) /2
jter = iter + 1
IF xr # 0 THEN
ed = ABS{({xr — xrold) / xr) + 100
END IF
test = fixl} * Flxr)
IF test < O THEN

£

X = Xr
ELSE IF test = (0 THEN
Xl = xr
ELSE
ea = {
£ND IF
IF ea < es OR iter = imax E£XIT
N Do
Bisect =

END Bisect
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5.2.3 Minimizing Function Evaluations

The bisection afgorithm in Fig. 5.10 is just fine if you are performing a single root
evaluation for a function that is easy to evaluate. However, there are many instances in
engineering when this is not the case. For example, suppose that you develop a computer
program that must locate a root numerous times. In such cases you could call the
algorithm from Fig. 5.10 thousands and even millions of times in the course of a single
run.

Further, in its most general sense, a univariate function is merely an entity that returns
a single value in return for a single value you send to it. Perceived in this sense, functions
are fiot always simple formulas like the one-line equations solved in the: preceding exam-
ples in this chapter. For example, a function might consist of many lines of code that could
take a significant amount of execution time to evaluate. In some cases, the function might
even represent an independent computer program.

Because of both these factors, it is imperative that numerical algorithms minimize
function evaluations. In this light, the algorithm from Fig. 5.10 is deficient. In particular,
notice that in making two function evaluations per iteration, it recalculates one of the func-
tions that was determined on the previous iteration.

Figure 5.11 provides a modified algorithm that does not have this deficiency. We have
highlighted the lines that differ from Fig. 5.10. In this case, only the new function value at

wogram which minimizes
nelion evaluations.

udocode for bisaction sub-

FUNCTION Bisect(x!, xu, es, imax, xr, iter, ea)
iter = 0
fl= fixl1).
oo

xrold = xr
xr=(xI +xu) /2
CHFE =)
iter = iter + 1
IF xr # (0 THEN
ea = ABS({xr — xrold}) / xr) + 100

END IF
Chtesto=of
IF test < 0 THEW
X o= xr
FISE IF test > 0 THEN
x! = xr
A=
fsE
ea =1
END T
IF ea < es OR iter = imax £XIT
FND 00
Bisect = xr
END Bisact
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the root estimate is calculated. Previously calculated values are saved and merely reassigne
as the bracket shrinks. Thus, n -+ 1 funetion evaluations are performed, rather than 2n.

THE FALSE-POSITION METHOD

Although bisection is a perfectly valid technique for determining roots, its “brute-force” ap
proach is relatively inefficient. False position is an alternative based on a graphical insigh

A shortcoming of the bisection method is that, in dividing the interval from x; to x,, int
equal halves, no account is taken of the magnitudes of f(x;) and f(x,). For example, if f(x
is much closer to zero than f(x,), it is Hkely that the root is closer to x; than to x, (Fig. 5.12)
An alternative method that exploits this graphical insight is to join f(x;) and f(x,) by
straight line. The intersection of this line with the x axis represents an improved estimate o
the root. The fact that the replacement of the curve by a straight line gives a “false position™§
of the root is the origin of the name, method of false position, or in Latin, regula falsi. It i 3
also called the [inear interpolation method. E -

Using similar triangles (Fig. 5.12), the intersection of the straight line with the x axis 3§

can be estimated as

f) ) s 6;

Xy — X} Xy — Xy

which can be solved for (see Box 5.1 for details).

(5-7;

FIGURE 5.12

A graphical depiction of the
method of false position. Similar
friangies used 1o derive the
formula for the method are

shaded.




