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Box 51 ' _Q({aﬁri_\\rgﬁon of the Method of Fc:is_e Position

.Vr,oss-multiply Eq. (5.6) to yield then adding and subtracting x, on the right-hand side:

.’ f(‘ri)(xl' — X)) = f(‘rk)(x!' —x) X =X = Yu f()’f;) — Ay — i f(x“)
f(-‘-‘f) - f(xu) f(xf) - f(xu)

Coilecting terms yields

xuf(xu) _ xlf(‘ru)
f():[}—-f(xﬂ) f(x[)ff(xu)

ollect terms and rearrange:

e L) = Fe] = ) — e fe)
ivide by flxi) — flxd R
o flo) — x0flx)

L (B5.1.1)
SET fle) — flx) o
fijs is one forru of the method of false position. Note that itallows . ., JO) (o = %)
o computation of the root x, as a function of the Jower and upper J) — e
iesses X and xy. I can be put in an alternative form by expanding ;o 55 the same as Eq. (5.7). We use this form because it involves
¥ one less funciion evaluation and one less multiplication than
xy flx) x ) Eq. {B5.1.1). In addition, it is directly comparable with the secant

T ) — foa

4 e PR TR

Flxy = fl,) method which will be discussed in Chap. é.
This is the false-position formula, The value of x, computed with Eq. (5.7) then replaces
whichever of the two initial guesses, x; ot x,, yields a function value with the same sign as
f(x). In this way, the values of x; and x, always bracket the true root. The process is
repeated uniil the root is estimated adequately. The algorithm is identical to the one for bi-
section (Fig. 5.5) with the exception that Eq. (5.7} is used for step 2. In additicn, the same
stopping criterion {Eq. (3.2)] is used to terminate the computation.

C} = E False Position
Problem Statement. Use the false-position method to determine the root of the same
equation investigated in Example 5.1 [Eq. (E5.1.1)].
Solution. As in Example 5.3, mitiate the compqtation with guesses of =12 and
x, = 16.
First iteration:
=12  flx) =6.0699
x, = 16 flx,) = —2.2688
—2.2688(12 - 16
x, = 16— ¢ ) = 14.9113
6.0669 — (—2.2688)
which has a true relative error of 0.89 percent.
Second iteration: -
Flu) fx,) = —1.5426
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Therefore, the root lies in the first subinterval, and x, becomes the upper limit for the ne
iteration, x, = 14.9113:
x =12 Jixn = 6.06_99
X = 149113 f(x,) = —0.2543
—0.2543(12 — 14.9113)

= 149113 — = 147942
*r = 149113 6.0669 — (—0.2543)

which has true and approximate relative errors of 0.09 and 0.79 percent. Additional nera-";
tions can be performed to refine the estimate of the roots.

A feeling for the relative efficiency of the bisection and falSe-position methods can bej
appreciated by referring to Fig. 5.13, where we have plotted the true percent relative errors)
for Examples 5.4 and 5.5. Note how the error for false position decreases much faster thari}
for bisection because of the more efficient scheme for root location in the false- posmon
method.

Recall in the bisection method that the interval between x; and x,, grew smaller dunng
the course of a computation. The interval, as defined by Ax/2 = |x, — x;{/2 for the firsi
iteration, therefore provided a measure of the error for this approach. This is not the casej

FIGURE 5.13

Comparison of the relative
errors of the bisection and the
false-position methods.
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for the method of false position because one of the initial guesses may stay fixed through-
out the computation as the other guess converges on the root. For instance, in Example 5.6
the lower guess x; remained at 12 while x, converged on the root. For such cases, the inter-
val does not shrink but rather approaches a constant value.

Example 5.6 suggests that Eq. (3.2) represents a very conservative error criteton. In
fact, Eq. (5.2) actually constitutes an approximation of the discrepancy of the previous
iteration. This is because for a case such as Example 5.6, where the method is converging
quickly (for example, the error is being reduced nearly an order of magnitude per
iteration), the root for the present iteration x™" is a much better estimate of the true value
than the result of the previous iteration x°“, Thus, the quantity in the numerator of
Eq. (5.2) actually represents the discrepancy of the previous iteration. Consequently, we
arc assured that satisfaction of Eq. (5.2) ensures that the root will be known with greater
accuracy than the prescribed tolerance. However, as described in the next section, there
are cases where false position converges slowly. For these cases, Eq. (5.2) becomes unre-
liable, and an alrg;irllative stopping criterion must be developed.

5.3.1 Pitfalls of the False-Position Method

Although the false-position method would seem o always be the bracketing method of

preference, there are cases where it performs poorly. In fact, as in the following example,

there are certain cases where bisection yields superior results.

A Case Where Bisection Is Preferable to False Position

Problem Staiement.  Use bisection and false position to locate the root of
fixy=x"%—1

between x = 0 and 1.3.

Solution.  Using bisection, the results can be summarized as

Iteration Xi Xy X, £a (%) £¢ (%)
1 0 1.3 0.65 100.0 35
Z 0.65 1.3 0.975 33.3 2.5
3 0875 1.3 1.1375 14.3 13.8
4 0875 1.1375 1.05625 v 5.6
5 0975 105625 1.015625 4.0 1.6

Thus, after five iterations, the true error is reduced to less than 2 percent. For false position,
a very different outcome 15 obtained:

Iteration Xf Xy X, Ea (76) £¢ (%)
| 8] 1.3 0.09430 Q0.6
2 009430 1.3 Q.18176 48.1 81.8
3 018176 1.3 0.26287 30.9 737
4 0.26287 1.3 (033811 22.3 &66.2
5 0.3381! 13 0.40788 171 50.2
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FIGURE 5.14

Plot of fix) = x'® — 1, illustrating slow convergence of the false-posifion methed.

After five iterations, the ‘%rue error has only been reduced to about 59 percent. In addi-
tion, note that g, < &,. Thus, the approximate error is misleading. Insight into these resolts 28
can be gained by examining a plot of the function. As in Fig. 5.14, the curve violates the 8
premise upon which false position was based—that is, if f(x;) is much closer to zero than |
f(x.), then the root is closer 1o x than 10 x, (recall Fig. 5.12). Because of the shape of the 1
present function, the opposite is true.

The forgoing example iHustrates that blanket generalizations regarding root-location J
methods are usually not possible. Although a method such as false position is often supe- |
rior to bisection, there are invariably cases that violate this general conclusion. Therefore. |
in addition to using Eq. (5.2), the results should always be checked by substituting the 100! §
estimate into the original equation and determining whether the result is close to zero. Such
a check should be incorporated into all computer programs for reot location. _

The example also illustrates a major weakness of the false-position method: its oné-
sidedness. That is, as iterations are proceeding, one of the bracketing points will tend 10 §
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stay fixed. This can lead to poor convergence, patticularly for functions with significant
curvature. The following section provides a remedy.

5.3.2 Modified False Position

One way o mitigate the “one-sided” nature of false position is to have the algorithm detect
when one of the bounds is stuck. If this occurs, the function value at the stagnant bound can
be divided in half. This is called the modified false-position method.

The algorithm in Fig. 5.15 implements this strategy. Notice how counters are used to
determine when one of the bounds stays fixed for two iterations. If this occurs, the function

. value at this stagnant bound is halved.

The effectiveness of this algorithm can be demonstrated by applying it to Example 5.6.
If a stopping criterion of 0.01% is used, the bisection and standard false-position methods

{GURE 5.15

alse-position method.

‘Pacudocode for the modified‘

FUNCTION ModFa??sePos(XI , X, es, Imax, xr, iter, ea)
iter = 0
fl = fixl)
fu = f{xu)
00
xrold = xr
Xro=xu— fu* (xT — xu) / (F1 — fu)
fr = flxr}
iter = jter + 1
IF xr <> ( THEN
ed = Abs{{xr — xrold) / xr) * 100

NG IF _
test = f1 * fr
IF test < O THEN
XU = Xr .
fu = f(xu)
it =20
il=1il +1

If il = 2 THEN f1 = f1/ 2
FLSE IF fest > 0 THEN

xI = xr
fl = f(x1)
il=20
v =iy + 1
IF ju= 2 THEN fu = fu/l 2
£1SF
ea =
END IF
IF ea < es OR iter = imax THEN EXIT
END DO

ModFaisePos = xr
£ND ModfalsePos
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5.4

would converge in 14 and 39 iierations, respectively. In contrast, the modified false-
position method would converge in 12 iterations. Thus, for this example, it is somewhat.
more efficient than bisection and is vastly superior to the unmodified false-position

method. 3

INCREMENTAL SEARCHES AND DETERMINING
INITIAL GUESSES

Besides checking an individual answer, you must determine whether all possible roots have i
been located. As mentioped previously, a plot of the function is usually very useful in guid- §
ing you in this task. Another option is to incorporate an incremental search at the beginning
of the computer program. This consisis of starting at one end of the region of interest and .
then making funciion evaluations at small increments across the region. When the function
changes sign, it is assumed that a root falls within the increment. The x values at the be- §
ginning and the end of the increment can then serve as the initial guesses for one of the §
bracketing techniques described in this chapter. '
A potential problem with an incremental search is the choice of the increment length.
If the length is too small, the search can be very time consuming. On the other hand, if the |
length is too great, there is a possibility that closely spaced toots might be missed §
(Fig. 5.16). The problem is compounded by the possible existence of multiple roots. A par-
tial remedy for such cases is to compute the first derivative of the function f'(x) at the
beginning and the end of each interval. If the derivative changes sign, it suggests that a §
minimum or maximum may have occurred and that the interval should be examined more ;
closely for the existence of a possible roof. " '
Although such modifications or the employment of a very fine increment can alleviate
the problem, it should be clear that brute-force methods such as incremental search are not ;
foolproof. You would be wise to supplement such antomatic techniques with any other |
information that provides insight into the location of the roots. Such information can be
found in plotting and in understanding the physical problem from which the equation
originated.

FIGURE 5.16

Cases where roofs could be
missed because the increment
length of the search procedure
is too large. Note that the lost
root on the right is multiple and
would be missed regardiess of
increment length.
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PROBLEMS

1 Determine the real roots of f(x) = —0.5x> + 2.5x 1 4.5:

(a) Graphically.

p) Using the quadratic formula.

(c) Using three iterations of the bisection method to determine
the highest root. Employ initial guesses of x; = 5 and x, = 10.
Compute the estimated error &, and the true error g, after each
iteration.

5.2 Determine the real root of f(x) = 57— 5l 46— 2

@ Graphically.

(b Using bisection to locate the root. Employ initial guesses of
- xy=0and x, = I and iterate until the estimated error &, falls
below a2 level of &, = 10%.

Determine the real root of f{x) = —254+82x — 90x% +
o — Bt 0.7 ) ' .

): Using bisection to determine the oot to g; = 10%. Employ ini-
tial guesses of x; = 0.5 and x,, = 1.0.

¢} Perform the same computation as in (b) but use the false-
** position method and 5, = 0.2 %.

4 {a) Determine the roots of fix) = —12 —2ix + [8x% —
752> graphically. In addition, determine the first root of the
unction with (b) bisection, and (c) false pesition. For (b) and (c)
initial guesses of xy = —l and x, = 0, and a stopping criterion
o 1%. '

.5 Locate the first nontrivial root of sin x = x°
adians. Use a graphical technique and bisection w1th the initiai
iriterval from 0.5 to 1. Perform the computation until g, is less than
== 2%. Also perform an error check by substituting your final
answer into the originai equation.

Determine the positive real root of In (x*) = 0.7 (a) graphi-

, where x {5 in

nesses of x; = 0.5 and x,, = 2, and (c) using three jterations of the
alse-position method, with the same inirial guesses as in (b).
.7 Determine the real root of f{x) = (0.8 — 0.3x)/x:

). Using thres iterations of the false-position method and initial
guesses of 1 and 3. Compute the approximate error &, ard the
true error & after each iteration. Is there a problem with the
¢ resule?

8 Find the positive square toot of 18 using the false-position
sthod {o within £, = 0.5%. Employ initial suesses of x; = 4 and

9 Find the smallest positive root of the function {x is in radians)
{cos/X| = 5 using the false-position method. To locate the
gion in which the root lies, first plot this function for values of x
een (4 and 5. Perform the computation until &, falls below

ly, (b) using three iterations of the bisection method, with initial -

&y = 1%. Check your final angwer by substituting it into the origi-
nal function.

5.10 Find the positive real root of flx) = x* —8x% — 352+
450x — 1001 using the fafse-position method. Use initial guesses
ofx; = 4.5 and x,, = 6 and performs five iterations. Compute both
the true and approximate ecvors based on the fact that the root is
5.60979. Use a plot to explain your results and perform the compu-
tation to within &, = 1.0%. '
5.11 Determine the real root of x33
(b} with the false-position method o within &
guesses of 2.0 and 5.0.

5.12 Given

Fl) = —=2x% — 152 s+ 10x +2

Use bisection to determine the maximum of this {unction. Employ
initial guesses of x; =0 and x, = 1, and perform iterations until
the approximate relative error falls below 5%.

5.13 The velocity v of a falling parachutist is given by

= 80: (a) analytically, and
= 2.5%. Use initial

v = éinu (l . e~(c,r’m)r)

where g = 9.8 m/s>. For a parachutist with a drag coefficient
¢ = 15 kg/s, compute the mass m so that the velocity is v = 35 m/s
atr=9s. Use the false-position method to determine m to a fevel of
g, =0.1%.

5.14 A beam is loaded as shown in Fig, P5.14. Use the bisection
method to solve for the position inside the beam where there is no
moment.

Figure P5.14

5.15 Water is flowing in a trapezoidal chaanel at a rate of Q =
20 ms. The critical depth y for such a channel must satisfy the
equation
2
0="1- Q—B
gA2
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where g = 9.81 m/s?, A, = the cross-sectional area (m?), and B =
the width of the channel at the surface (m}. For this case, the width
and the cross-sectional arca can be related to depth y by

p4

)!
A, =3y +
)"1"2

B=3+4y and
Solve for the critical depth using (a) the graphical method, () bi-
section, and (¢} false position. For (b} and () use initial guesses of
x = 0.5 and x, = 2.5, and iterate until the approximate error falls
below 1% or the number of iterations exceeds 10. Discuss your
results.

5.16 You are designing a spherical tank (Fig. P5.16) to hold water
for a small village in a developing country. The volume of liquid it
can hold can be computed as

v zﬂhZBL’;{]Q

where V == volume [m°], & == depth of water in tank [m], and R =
the tank radius fm].

Figure P5.16

If R = 3 m, to what depth must the tank be filled so that it holds
30 m’7 Use three iterations of the false-position method to deter-
mine your answer. Determine the approximate relaiive error after
each weration.

5.17 The saturation concentration of dissolved oxygen in fresh-
water can be calculated with the equation (APHA, 1992)

"method can be used to solve for temperature in °C.

1.575701 x 10°  6.642308 x 107
T, T2
1.243800 x 10'%  8.621949 x 10!
T3 - T?

Inog = 13934411 +

where o, = the saturation concentration of dissolved oxygen iiy;
freshwater at 1 atm (mg/L) and 7, = absolute lemperature (
Remember that T, = T 4-273.15, where T" = temperature (°C).
According to this equation, saturation decreases with increasing
temperature. For typical natural waters in temperate climates, the:
equation can be used to-determine that oxygen concentration 3
ranges from 14,621 mg/L at 0°C to 6.413 mg/L. at 40°C. Given a

value of oxygen concentraiion, this formula and the bisection ‘

(a) 1f the initial guesses are set as 0 and 40°C, how many bisection
iterations would be required to determine temperature to an’
absolute error of 0.03°C? '

(b} Develop and test a bisection program fo determine T as a func;
tion of a given oxygen concentration to a prespecified absolute
error as in (a). Given initial guesses of 0 and 40°C, test your
program for an absolute -error.= 0.05°C and the following
cases: oy = 8, 10 and 12 mg/L.. Check your results.

5.18 Integrate the algorithm cutlined in Fig. 5.10 into a complete,

user-friendly bisection subprogram. Among other things: :

{a) Place documentation statements throughout the subprogram ‘Lo
identify what each section is intended to accomplish.

(b) Label the input and output.

(€) Add an answer check that substitutes the root estimate into thﬁ
original function to verify whether the final result is close to ze ;

{d) Test the subprogram by duplicating the computations from
Examples 5.3 and 5.4. 5

5.19 Develop a subprogram for the bisection method that miliz

mizes function evaluations based on the psendocede from Fig. 3.11.

Détermine the number of function evaluations (n) per total itera:

tions. Test the program by duplicating Example 5.6.

5.20 Develop a user-friendly program for the false-positiofl

method. The structare of your program should be similar to the

bisection algorithm outlined in Fig. 5.10. Test the program by
duplicating Example 5.5. -

5.21 Develop a subprogram for the false-position method that 7%

minimizes function evaluations in a fashion similar to Fig. 5.1

Determine the number of function evaluations {r) per total iterd*

tions. Test the program by duplicating Example 3.6. .

.22 Develop a user-friendly subprogram for the modified false:

position method based on Fig. 5.15. Test the program by determiﬂf :

ing the root of the function described in Example 5.6. Perform 2

number of runs until the true percent relative error falls beldW

0.01%. Plot the true and approximate percent relative errors versis

number of iterations on semilog paper. Interpret your resulis.




HAND OUT 8: Open methods (Chapter 2 of our syllabus). Source: Chapra,
8. C., and Canale, R. P. (2006). “Numerical methods for engineers.” McGraw-Hill,
fifth edition. '




Open Methods

For the bracketing methods in the previous chapter, the root is located within an interval
prescribed by a lower and an upper bound. Repeated application of these methods always
results in closer estimates of the true value of the root. Such methods are said to be con-
vergent because they move closer to the truth as the computation progresses (Fig. 6.1a).

In contrast, the open methods described in this chapter are based on formulas that
require only a single starting value of x or two starting values that do not necessarily bracket

FIGURE 6.1

Graphical depiction of the
fundamental differance between
the [a] bracketing and (b} and
{c} open methods for ool
Jocation. In (o), which is the
isection method, the roat is
constrained within the interval
prescribed by x, and x,. In
nteast, for the opan method
epicted in (b} and (), a

ormuic is used o project from
{0 %) inan erative fashion.
hus, the method can either (b}
iverge or |l converge rapidly,
spending on the value of the

=
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6.1

the root. As such, they sometimes diverge or move away from the true root as th
computation progresses (Fig. 6.14). However, when the open methods converge (Fig. 6.1¢
they usually do so much more quickly than the bracketing methods, We wiil begin our di
cussion of open techniques with a simple version that is useful for illustrating their gener
form and also for demonstrating the concept of convergence.

SIMPLE FIXED-POINT ITERATION

As mentioned above, open methods employ a formula to predict the root. Such a formula®
can be developed for simple fixed-point iteration {or, as 11 is also called, one-point iteration”
o successive substitution) by rearranging the function f{x) = { so that x is on the left-han
side of the equation: ’

x = g(x) , (6.

This transformation can be accomplished either by algebraic manipulation or by simpk
adding x to both sides of the original equation. For example,

X2 —2x4+3=0
can be simply manipulated to yield

sz—f—S
T2

whereas sin x = 0 could be put into the form of Eq. (6.1) by adding x to both sides to yiel

X =sinx -+ x

The utility of Eq. (6.1) 1s that it provides a formuia 1o predict a new value of x as a
fonction of an old value of x. Thus, given an initial guess at the root x;, Eq. (6.1) can be used
to compute a new estimate x;; as expressed by the iterative formula

s

Xig1 = g{x) (6.2} 2
As with other iterative formulas in this book, the approximate error for this equation can be 3
determined using the error estimator {Eq. (3.5)]:

Xipl = X

100%

£g =

Af+i

Simple Fixed-Point iteration
Problem Statement.  Use simple fixed-point iteration 1o locate the root of f{x) = ¢~ —~ . =
Solution,  The function can be separated directly and expressed in the form of Eq. (6.2) a5

Xppp =7
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Starting with an initial guess of xp = 0, this iterative equation can be applied to compute
i x; &q {%) ¢ {%)
O 0 100.0
] F.00CC00 100.0 76.3
2 0.36787% 171.8 35.1
3 0.692201 46.9 22.1
4 0.500473 38.3 1.8
5 0.606244 17.4 6.89
o] 0.54539%96 11.2 3.83
7 0.579612 5.90 2.20
8 0.560115 3.48 1.24
Q 0.571143 1.93 0.705
10 0.564879 1.11 £.309
- ¥
Thus, each iteration brings the estirnate closer to the true value of the root: 0.56714329,

6.1.1 Convergence

Notice that the true percent refative error for each iteration of Example 6.1 is roughly pro-
poriional (by a factor of about 0.5 to 0.6) to the error from the previous iteration. This prop-
erty, called linear convergence, is characteristic of fixed-point iteration,
Aside from the “rate” of convergence, we must comment at this point about the
“possibility” of convergence. The concepts of convergence and divergence can be depicted
graphically. Recall that in Sec. 5.1, we graphed a function to visualize its structure and be-
havior (Example 5.1). Such an approach is employed in Fig. 6.2a for the function f(x) =
P e™* — x. An alternative graphical approach is o separate the equation into two cormponent
parts, as in

filx) = folx)
Then the two equations

yi = fi(x) ‘ (6.3)
and ‘

¥ = folx) . (6.4)

can be plotted separately (Fig. 6.2b). The x values corresponding to the intersections of
these functions represent the roots of flx) = 0.

TR

The Two-Curve Graphical Method

Problem Statement. Separate the equation e™ — x = ( into two parts and determine its
root graphically.

i ¥
N T 2t
[ sy

Solution. Reformulate the equation as y; = x and y, = ¢~ The following values can
be computed:

o
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x  w y2
0.0 [6X¢} 1.000 .
Q.2 Q.2 0819
0.4 0.4 0.670
0.6 0.6 {.549
0.8 08 0.449
1.0 1.0 0.348

These points are plotted in Fig. 6.25. The intersection of the two curves indicates a root
estimate of approximately x = 0.57, which corresponds to the point where the single curve
in Fig. 6.2a crosses the x axis.

FIGURE 6.2
Two alkernative graphical methods for determining the root of flx] = &7 — x_ {a] Root at the

point whare it crosses the x axis; Eb} root at the intersection of the component functions.
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The two-curve method can now be used to illustrate the convergence and divergence
of fixed-point iteration. First, Eq. (6.1) can be re-expressed as a pair of equations y; = x
and y; = g(x). These two equations can then be plotted separately. As was the case with
Egs. (6.3) and (6.4), the roots of f(x) =0 correspond to the abscissa value at the intersec-
tion of the two curves. The function y; = x and four different shapes for y; = g(x) are plot-
ted in Fig. 6.3.

For the first case (Fig. 6.3a), the initial guess of xg is used to determine the correspond-
ing point on the y, curve fxq, glxg)]. The point (x, x) is located by moving left horizontally
to the y, curve. These movements are equivalent to the first iteration in the fixed-point
method:

x| = glxq)

Thus, in both the equation and in the plot, a starting value of x, is used to obtain an estimate
of x;. The next iteration consists of moving to [x;, g(x,)] and then to (x4, x2). This iteration

¥

ition. Graphs {a} ond {c) are
lled monatona patterns,
secs {b] and {d) are called

4

j

o o
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_Box 6.1

From studying Fig. 6.3, it should be clear that fixed-point iteration
converges if, in the region of interest, |g'(x}| < 1. In other words,
convergence occurs if the ma¥nitude of the slope of g{x) is less
than the slope of the line f{x) = x. This observation can be demon-
strated theoretically. Recall that the iterative equation is

Xivr = 8{x;)
Suppose that the true solution is
j X = g(x.)
' Subtracting these equations yields
Xr = X1 = g{x) — glx;) (B6.1.1)

The derivative mean-value theorem {recall Sec. 4.1.1) states that if
a function g(x) and its first derivative are continuous over an inter-

I'4 } vala < x < &, then there exists at least one value of x = & within
N the interval such that
) By —gla
gy = )~ gle) (B6.1.2)
b—a

The right-hand side of this equation is the slope of the line joining
g{a) and g(b). Thus, the mean-value theorem states that there is at
teast one point between g and b that has a slope, designated by g'(£),
which is parallel to the line joining g(a) and g(b) (recall Fig. 4.3).

is equivalent to the equation

Xy = g(x3)

Convergence of Frxed Point iferofton

AN B R T A DI S L T T T e e s, D T e R G i e

Now, if we let a =x; and b = x,, the right-hand side of B
(B6.1.1) can be expressed as

g(X,—) - g()c,-) = {x, _xi)gl(";:)

where £ is somewhere between x; and x,. This result can then
substituted into Eq. (B6.1.1) to yield

X = Xpgy = (X — %) 8" (&) (B6.1.

If the true error for iteration i is defined as
E;i =X —x

then Eq. (B6.1.3) becomes
Eiip1 = &' () E;

Consequently, if |g'(x)| < I, the errors decrease with each iteratio
For |g'(x)! > 1, the errors grow. Notice also that if the derivative-
positive, the errors will be positive, and hence, the iterative soluiig
will-be monotonic (Fig. 6.3a and c}. If the derivative is negativ
the errors will oscillate (Fig. 6.36 and d).

An offshoot of the analysis is that it also demonstrates that whe
the method converges, the error is roughly proportional to and les
than the error of the previous step. For this reason, simple ﬁxcd
point jteration is said to be linearly canvergen.

ez

The solution in Fig. 6.3% is convergent because the estimates of x move closer to th
root with each iteration. The same is true for Fig. 6.35. However, this is not the case _
Fig. 6.3c and d, where the iterations diverge from the root, Notice that convergenct
: seems (o occur only when the abselute value of the slope of y; = g(x) is less than th
I slope of y, = x, that is, when |g'(x)| < 1. Box 6.1 provides a theoretical derivation o

this result.

6.1.2 Algorithm for Fixed-Point Iteration

The computer algorithm for fixed-point iteration is extremely simple. It consists of a loop
PR to iteratively compute new estimates until the termination criterion has been met. Figure 6-
S presents pseudocode for the algorithm. Other open methods can be programmed in a simi:
lar way, the major modification bemg to change the iterative formula that is used to compﬂt"’ :
the new root estimate.

-
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seudocods for fixed-point
rafion. Note that other open ‘
ethods can ba cast in this gen-
ral format.

FUNCTION Fixpt(x0, es, imax. iter. ea)
xr= x0
iter =
oa
xrold = xr
xr = gixrold)
iter = iter + 1
IF xr + 0 THEN

og = | X0 xmi’d._ 100
Xr
ENDFF
IFea < es OR iter = imax EXIT
END G0
Fixpt = xr
END Fixpt

dphical depiction of the
ewion-Raphson method.
ngent o the function of x;
is, Flxl] is extrapolated

n fo the x axis fo provide
stimate of the oot at x, ;.

6.2

THE NEWTON-RAPHSON METHOD

Perhaps the most widely used of all root-locating formulas is the Newton-Raphson equa-
tion (Fig. 6.5). If the initial guess at the root is x;, a tangent can be extended from the point

{xi. f(xp}]. The point where this tangent crosses the x axis usually represents an improved
estimate of the root.




R
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The Newton-Raphson method can be derived on the basis of this geometrical inter
pretation (an alternative method based on the Taylor series is described in Box 6.2). As in
Fig. 6.5, the first derivative at x is equivalent to the slope:

) —0
Fim) = Jt) =0 (6.5)

i — Xip

which can be rearranged to yield

which is called the Newton-Raphson formula.

Newton-Raphson Method
Problem Statement. Use the Newton-Raphson method to estimate the root of )
e * — x, employing an initial guess of x; = 0.
Solufion. . The first derivative of the function can be evaluated as
@) =—e*—1
which can be substituted along with the original function into Eq. (6.6) to give

e —x;
Xipl = X — e 1

Starting with an initial guess of x; = 0, this iterative equation can be applied to comput

i x; er (%)
0 0 100

1 0.500000000 “ 118

2 0.566311003 ; 0.147

3 0.567143165 0.0000220
4

0.567143290 <1078

Thus, the approach rapidly converges on the true root. Notice that the true percent relaitv
error at each iteration decreases much faster than it does in simple fixed-point iteratio:
{compare with Exampie 6.1).

6.2.1 Termination Criteria and Error Estimates

As with other root-focation methods, Eq. (3.5) can be used as a termination criterion. In ad
dition, however, the Taylor series derivation of the method {(Box 6.2) provides theoretica
insight regarding the rate of convergence as expressed by £y, = O(E ). Thus the erro
should be roughly proportional to the square of the previous error. In other words, the
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%de from the geomertric dertvation [Eqs. (6.5) and {6.6)], the
2wt0n-Raphson method may also be developed from the Taylor
eries cxpansion. This alternative derivation is useful in that it also
ovides Insight into the rate of convergence of the method.

Recall from Chap. 4 that the Taylor series expansion can be rep-

sented a8
Flreesd = fO) + ) (g — x)

. fﬂ(E)
+ 2!

2

Cripr — x:)° (B6.2.1)

here # lics somewhere in the interval from x; to x;, | . An approxi-
yie version is obtainable by truncating the series after the first
rivative term.
:f(—’fi+l) 2 fl) + e —x) .
V;thc intersection with the x axis, flx;;,) would be equal to
to, or

0= fla) + f (o —x) (86.2.2)
iich can be solved for
=y flx)

i+1 i f’ (x;)

phson formula using a Taylor series.

‘Aside from the derivation, the Taylor series can also be used o
imate the error of the formula. This can be done by realizing that
“he complete Taylor series were employed, an exact result would

SpprEn s ot e R e AT e T S T T O L R B

i
.
WL

error, as 1a

E ~ ‘“fﬂ(xr) 2
[ N N T
2f"(x)

fllxy=—e*—1

Box 6.2 De;_iv__qﬁgn _gnd Error _Anc:l_ysis_ o_F fhg Ne_wtgangphson M_eihod

be obtained. For this situation x;,; = x,. where x is the true value
of the root. Substituting this valuc along with f(x.} =0 into
Eq. (B6.2.1) yields

0= flx) + [} —x) + fz(lé) (o~ x;)? (B6.2.3)
Equation (B6.2.2) can be subtracted from Eq. (B6.2.3} to give
0= F{x)x — xigr} + %(M - 1) (B6.2.4)

Now, realize that the error is equal to the discrepancy between x;,
and the true value x,, as in

Ei.i+£ =X ™ Xip
ind Eq. (B6.2.4) can be expressed as

f”{é)
21

0= f{x)E i1 + EL, (B6.2.5)
If we assume convergence, both x; and £ should eventually be ap-
proximated by the root x,, and Eq. (B6.2.3) can be rearranged to
vield

A_‘f’! (xr) Ez ‘
2f ey
According to Eq. (B6.2.6), the error s roughly proportional to the
square of the previous error. This means that the number of correct
decimal places approximately doubles with each iteration. Such
behavior is referred to as quadratic convergence. Example 6.4
manifests this property.

Eiiy) = (B6.2.6)

R S

number of significant figures of accuracy approximately doubles with each iteration. This
behavior is examined in the following example.
Error Analysis of NewtonRaphson Method

Problem Statement.  As derived in Box 6.2, the Newton-Raphson method is quadrati-
cally convergent. That is, the error is roughly proportional to the square of the previous

(E64.1)

Examine this formula and see if it applies to the results of Example 6.3.

Solution.  The first derivative of f(x) = ™ — xis

[
4
H
4
%
i
i
L
b
i
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which can be evaluated at x,=10.56714329 as f’(0.56714329).= —1.56714329, The

second derivative is :
[nd

frxy=e™"

“ which can be evaluated as £7(0.56714329) = 0.56714329. These results can be substituted

into Eq. (E6.4.1) to yield

0.56714329

By &m0
Ll 2(—-1.56714329)

E}, = 0.18095E7;

From Example 6.3, the initial error was F, g = 0.56714329, which can be substituted into
the error equation to predict

E; 1 = 0.18095(0.56714329)? = 0.0582

which is close to the trie error of .06714329. For the next iteration,
E; 5 = 0.18095(0.06714329)* = 0.0008158

which alsorc0mpar_e,s favorably with the true error of 0.0008323. For the third iteration,
E, 3 2 0.18095(0.0008323)% = 0.000000125

which is the error obtained in Example 6.3. The error estimate improves in this manner
because, as we come closer to the root, x and £ are better approximated by x, [recall our
assumnption in going from Eq. (B6.2.5) to Eq. (B6.2.6) in Box 6.2]. Finally,

E, 4 = 0.18095(0.000000125)* = 2.83 x 107"

Thus, this example illustrates that the error of the Newton-Raphson method for this case is,
izt fact, roughly proportional (by a factor of 0.18095) to the square of the error of the pre-
vious iteration.

6.2.2 Pitfalls of the Newton-Raphson Method

Although the Newton-Raphson method is often very efficient, there are situations where it
performs poorly. A special case—muitiple roots—will be addressed later in this chapter.
However, even when dealing with simple roots, difficulties can also arise, as in the fellow-
ing example.

Example of a Slowly Converging Function with Newion-Raphson

Problem Statement. Determine the positive root of f{x) = x'® = I using the Newton-
Raphson method and an initial guess of x = 0.5,
Solution.  The Newton-Raphson formula for this case is

X0 —1

10x;

Xitl =X —

which can be used to compute
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Iteration x

0.5
51.65
46.485
41.8365
37.65285
33.887565

B W — O

o, 1.0000C00

Thus, after the first poor prediction, the technique is converging on the true root of 1, but
at a very slow rate.

' ¥

-

Aside from slow convergence due to the nature of the function, other difficulties can
arise, as illustrated in Fig. 6.6. For example, Fig. 6.0a depicts the case where an inflection
point [that is, "(x) = 0] occuss in the vicinity of a root. Notice that iterations beginning at
xp progressively diverge from the root. Figure 6.65 illustrates the tendency of the Newton-
Raphson technique to oscillate around a local maximum or migimum. Such oscillations
may persist, or as in Fig. 6.6b, a near-zero slope is reached, whereupon the solution is sent
far from the area of interest. Figure 0.6¢ shows how an initial guess that is close to one root
can jump to a location several roots away. This tendency to move away from the area of
interest is because near-zero slopes are encountered. Qbviously, a zero slope [ f/(x) = 0] is
truly a disaster because it causes division by zero in the Newton-Raphson formula
{Eq. (6.6)]. Graphically (see Fig 6.6d), it means that the solution shoots off horizontally
and never hits the x axis.

Thus, there is no general convergence criterion for Newton-Raphson. Its convergence
depends on the nature of the function and on the accuracy of the initial guess. The only
remedy is to have an initial guess that is “sufficiently” close to the root. And for some
functions, no guess will work! Good guesses are usually predicated on knowledge of the
physical problem setiing or on devices such as graphs that provide insight into the behav-
ior of the solution. The lack of a 'general’ convergence criterion also suggests that good
computer software should be designed t recoguize slow convergence or divergence. The
next section addresses some of these issues.

6.2.3 Algorithm for Newton-Raphson

An algorithm for the Newton-Raphson method is readily obtained by substituting Eq. (6.6)
for the predictive formula [Eq. (6.2)] in Fig. 6.4. Note, however, that the program must
also be modified to compute the first derivative. This can be simply accomplished by the
inclusion of a user-defined function.

Additionally, in light of the foregoing discussion of potential problems of the Newton-
Raphson method, the program would be improved by incorporating several additional
features:




OPEN METHODS

144

FIGURE 6.6

Four cases where the NewionRaphson methad exhibits poor convergence.
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6.3

=~

A plotting routine should be included in the program.

2. Atthe end of the computation, the final root estimate should always be substituted into
the original function to compute whether the result is close to zero. This check partially
guards against those cases where slow or oscillating convergence may lead to a small
value of &, while the solution is still far from a root.

3. The program should always include an upper limit on the number of iterations to guard
against oscillating, stowly convergent, or divergent solutions that could persist inter-
minably.

4, The program should alert the user and take account of the possibility that f'(x) might

equal zero at any time during the computation.

- THE SECANT METHOD

A potential problem in implementing the Newton-Raphson methaod s the evaluation of the
derivative. Although this is not inconvenient for polynomials and many other functions,
there are certain functions whobe derivatives may be extremely difficult or inconvenient to
evaluate. For these cases, the derivative can be approximated by a backward finite divided

gifference, as in (Fig. 6.7)
SO ) = flx)

X — X

Fix) =

FIGURE 6.7
Graphical depiction of the secant methad. This techaique is similar to the Newlon-Raphson tech-

nigue [Fig. 6.5) in the sense thal an eslimate of the root is predicted by extrapolating o tangent
of the function to the x axis. However, the secant method uses a difference rather than a deriva-
five fo estimate the slope.

4

A
%
%

P e

s
bt

L




HAND OUT 9: Behavior of the Colebrook-White equation (Chapter 2 of our
syllabus). :
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HAND OUT 10: Example of the behavior of the Iteration of a point method
(Chapter 2 of our syllabus).

-
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HAND OUT 11: Picture of flow in the Hayden-Rhodes Aqueduct, Central
- Arizona Project (Chapter 2 of our syltabus). Source: Mays, L. (2006). “Water
resources engineering.” John Wiley and Sons.




5.1 Steady Uniform Flc.

Figure 5.1.2 Hayden-Rhodes Aqueduct, Central Arizona Project. (Courtesy of the .S, Bureau of Reclamation, (1985},

photograph by Joe Madrigal jr.)




HAND OUT 12: Picture of pollution (Chapter 4 of our syllabus). Source:
Cover of the book by Altinakar, M., and Graf, W. (1998). “Fluvial Hydraulics.”
John Wiley and Sons.
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HAND OUT 13: Description of the LAKE model (Chapter 4 of our syllabus).
Source: ILEC, International Lake Environment Committee.




