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Preface

This is a basic compilation of hand outs and class notes that I have been gathering

“and preparing during the years of teaching of ECI 146, since 2004, at the Department of

Civil and Environmental Engineering of UC Davis. When I had to prepare the notes for
the course for the first time (starting from zero), I soon realized that there was not a single
book including all the needed material for a course on “Water Resources Simulation” (at
least, not with the perspective that I consider useful and interesting for such a course).

© This assertion is unfortunately true even today, in my modest opimion.

Thus, these pages assemble some portions of text from very well-known books, in

~ addition to notes I prepared for the course. The course initially reviewfmaterial from
‘basic numerical analysis in order to placg the application to water resources in the right

context, and in the proper understanding'the source of the different schemes. I humbly
consider this approach to be not common in usual books dealing with water resources.
Immediately after the explanation of each numerical technique, the course emphasizes its
application to solve problems in water resources engineering, ranging from flow in pipes
to the flow in open channels and transport of pollutants.

This compilation is expected to be improved in quality of presentation, content,
and number of notes prepared by myself. It was put together following some requests
from the students in order to have a unique repository on paper for all handouts, provided
up to now in electronic form in the course website.

I wilt particularly thank any comment, suggestion or direct collaboration to make
this a better compilation for ECI 146. :

Yours truly,

Fabian A. Bombardelli, Davis, CA
January.




UNIVERSITY OF CALIFORNIA, DAVIS
DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

COURSE: WATER RESOURCES SIMULATION (ECI 146)
INSTRUCTOR: Fabidn A. Bombardelli (fabombardelli@ucdavis.edn, bmbrdli@yahoo.com,
febianbombardelli2@gmail.com)

OFFICE; 3105, Engineering III building
Class: Tuesdays and Thursdays-1:40 PM to 3:00 PM (Hutch 115)

Computer lab; Fridays-11:00 AM to 11:50 PM (Chem 166)

READER: Mr, Carlos Zurity (Ph.D. Student)

TEACHING ASSISTANT: Mr. James Kohne (M.S. Student)

P

- COURSE DESCRIPTION

This course focuses on the development and application of numerical simulation

techniques for the analysis, design and operation of surface water systems. The course

especially addresses problems associated with surface run-off, water quality in streams

and ponds, and management of reservoirs. The course possesses a strong emphasis on the

theory conducive to the development of simple codes to analyze different cases of
@ practical importance.

PREREQUISITES
ECI 141, ECI 145, and ECI 142.

TEXT

There is no formal text that covers what we cover in the course. Hand outs and
supplemental reading material will therefore be provided, compiled in a book.

SOME REFERENCES

1. Chapra, S. C., and Canale, R. P. (2006). “Numerical Methods for Engineers.”
Fifth Edition, McGraw Hill Higher Education Series. Only some chapters from
this book will be used.

2. Mays, L. (2006). “Water Resources Engineering.” John Wiley and Sons. Only
some chapters from this book will be used.

3. Mays, L., Ed. in Chief (2001). “Stormwater Collection Systems Design
Handbook.” MecGraw-Hill.

4. Chow, V. T, Mays, L., and Maidment, D. (1998). “Applied Hydrology.
McGraw-Hill.

5. Linsley, R. K., and Franzini, J. B. (1979). “Water-Resources Engineering.”
McGraw-Hill.

6. Burden, R. L., and Faires, J. D. (2004). “Numerical Analysis.” Brooks-Cole
Publishing, Eighth Edition.

7. lIsaacson, E., and Keller, H. B. (1966). “Analysis of Numerical Methods.” Dover.




8. Abbott, M. B. (1979). “Computational Hydraulics. Elements of the Theory of
_ Free Surface Flows.” Pitman, UK.
9. Koutitas, C. G. (1983). “Elements of Computational Hydraulics.” Pentech Press,
UK.
10. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007}.
“Numerical Recipes in Fortran. The art of scientific computing.” Cambridge.

OFFICE HOURS _Toesdays and Thursdays affer class

Mondays and Fridays, 12:00 to 2:00 PM.'Klso, e-mail me to make special appointments
 (fabombardelli@ucdavis.edu or bmbrdllZvahoo.com
. .or fabianbombardelli2@gmail.com)

GRADING

Assignments 10%

Comiputer problems 20%

[ hourly in class exam 20% (individual effort)
1 special project 20% (individual effort)
Final exam (2 hours) 30% (individual effort)
NUMERICAL TOOLS

The codes can be developed in Fortran, Basic, C, Pascal, Matlab, or Excel (if applicable).
ASSIGNMENT, COMPUTER PROBLEM, PROJECT, AND EXAM POLICIES

The purpose of homework is to contribute signiﬁcaggy to the learning process. Students
are strongly encouraged to develop assignments? computer problems MRS in
teams. The total number of team members should not exceed three (3). The composition
of the team can be varied from homework to homework, but the students have to turn in
just one solution to the homework. Team members receive the same grade. Based on this,
it is mandatory that the students of the team share similar loads of work. It is pot
necessary to report the names of the team members to the instructor in advance. Just
make a cover page with the names of the members when turning in the homework
solution.

Normally, each assignment should be completed in 7 to 15 days. Assignments, computer
problems and projects turned in one (1) week after the deadline will be penalized with 30
points out of 100. After two (2) weeks, assignments, computer problems or projects will
not be accepted.

Examination and project solutions must represent the efforts of individuals only. It is

strongly recommended that the students have a copy of the graded solution before the

examination. Exams will be closed notes, closed books, and they may include the
development of code flow charts.




IMPORTANT DATES

Midterm exam (in class): Tuesday, February 17, 2009

Final exam (in class): Saturday, March 21, 2009, 3:30 PM to 5:30 PM
Review session for the midterm: Thursday, February 12, 2009 (half hour)
Review session for the final: Thursday, March 12, 2009 (entire class)

Computer Problem 1: Iterative solution of the Colebrook-White Equation and of
systems of non-linear equations for the design of pipes

Assigned: 01/08/09

Due with no penalization: 01/20/09

Due with 30% penalization: 01/27/09

Computer Problem 2: Solution of the water-quality problem in 2 lake by fimile
differences

Assigned: 01/29/09

Due with no penalization: 02/10/09

Due with 30% penalization: 02/17/09

Computer Problem 3: Sclution of backwater curves using the explicit and implicit
methods in finite differences (after Midterm)
Assigned: 02/26/09
. Due with no penalization: 03/05/09
) Due with 30% penalization: 03/12/09

Assignment 1

Assigned: 01/20/09

Due with no penalization: 01/25/09
Due with 30% penalization: 02/05/09

Assignment 2 (after Midterm)
Assigned: 02/19/09

Due with no penalization: 02/26/09
Due with 30% penalization: 03/05/09

Project

Assigned: 01/15/09

Due with no penalization: 03/12/09
Due with 30% penalization: 03/19/09

~




UNIVERSITY OF CALIFORNIA, DAVIS
DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

COURSE: WATER RESOURCES SIMULATION (ECI 146)
INSTRUCTOR Fabidn A. Bombardelli (fabombardelli@ucdavis.edu, bmbrdli@yahoo.com,
[fabianbombardelli2@gmail.com)

OFFICE: 3105, Engineering I building
Class: Tuesdays and Thursdays-1:40 PM to 3:00 PM (Huich 115)

Computer lab: Fridays-11:60 AM to 11:50 PM (Chem 166)

READER: Mr. Carlos Zuritz (Ph.D. Student)

TEACHING ASSISTANT: Mr, James Kohne (M.S, Student)

w
SYLLABUS OF ECI 146, WATER RESOURCES SIMULATION

i. Introduction,

1.a) Importance of water resources (01/06/09).

1.b) Definition of simulation. Evaluation of simulation of water resources as a
tool for management (01/06/09).

1.¢) Classification of modeling approximations: 0D, 1D, 2D and 3D. Examples of
water bodies in California (¢1/06-08/09).

1.d) The Moody diagram (01/08/09).

2. Basic concepts on numerical techniques, Part 1.

'2.a) Heuristic classification of equations (01/08/09).

2.b) lterative solution of non-linear equations by the methods of Newton-
Raphson, bisection, Regula-Falsi, and iteration of a point (01/13-15/09).

2.¢) Advantages and disadvantages of each method (01/15/09).

2.d) Iterative solutions of systems of non-linear equations applied to the sohution
of flow in pipes (01/15-20/09). '

2.¢) Computation of normal-flow depth (01/20/09).

3. Basic concepts on numerical techniques. Part I1.

3.a) Introductory ideas on the solution of ordinary differential equations by finite-
difference methods. Forward, backward or centered schemes (01/22/09).

3.b) Approximation of first and higher-order derivatives by finite differences.
Explicit and implicit solutions of Ordinary Differential Equations (ODEs) (01/22/09).

3.¢) Euler and Runge-Kutta methods (01/22/09).

3.d) Consistency, convergence and stability of numerical solutions (01/27/09).

3.e) Notions on the finite-clement method (01/27/09).

3.f) Computations of backwater curves by finite differences (01/27-29/09).

4. Zero-order models for water-quality simulations in water bodies.

4.a) Phenomena associated with pollution in water bodies (01/29/09).

4.b) Reactor models for the simulation of the time evolution of phosphorus and
nitrogen in lakes. Lake model (02/03/09).

4.¢c) A simple sedimentation-resuspension model for rivers (02/03/09).




5. Simulation of water retentmn in ponds and reservoirs.
5.a) Methods for flood-wave routing in reservoirs and. rivers (02/05/09)
5.b) Hydrotogic reservoir modeling (02/05/09).
5.¢c) Reservoir flood management (02/05/09).

6. One-dimensional hydrodynamic models.

6.a) Hydrologic river routing. Muskingum method (02/ 10/09).

6.b) Derivation of the one-dimensional equations of fluid motlon in rivers
(02/10/09).

6.c) Hydraulic river routmg (02/12/09).

6.d) Kinematic wave model. Kinematic wave model for overland flow (02/12/09).

6.e) Different numerical schemes used to solve the flow equatlons (02/17/09).

6.f) Muskingum-Cunge method (02/19/09).

7. Ome-dimensional models of water quality in streams.

7.a) Basic equations of one-dimensional advection-diffusion (dispersion} of
pollutants (02/19/09).

7.b) Transport models including reactive terms (02/19/09).

7.c) Transport models for organic matter in streams (02/24/09).

7.d) Transport models for suspended sediment in streams (02/24/09).

7.e) Transport models to assess pollution in water bodies (02/24/09).

7.f) Numerical schemes to deal with transport equations of the advection-
diffusion type (02/26/09).

8. Introduction to two- and three-dimensional, flow and water-quality models.
8.a) Basic concepts and models most used in practice (03/05/09).
8.b) Description of case studies (03/05/09).
8.c) Shallow-water equations (03/05/09).

Note: Dates for each topic are subject to change.
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HAND OUT 4: Importance of water resources (Chapter 1 of our syllabus)
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HAND OUT 2t Jmportance of water resources (Chapter 1 of our syllabus)
Source: Mays, L. (2006). “Water resources engineering” John Wiley and Sons




Chapter 1

1.1 BACKGROUND

Introduction

Water resources engineering {and management) as defined for the purposes of this book includes
engineering for both water supply management and water excess management (see Figure 1.1.1).
This book does not cover the water guality management (or environmentel restoration) aspect of
water resources engineering. The two major processes that are engineered are the hydrologic
processes and the hydraulic processes. The common threads that relate to the explanation of the
hydrologic and hydraulic processes are the fundamentals of fluid mechanics. The hydraulic process-
es include three types of flow: pipe (pressurized) flow, open-channel flow, and groundwater flow.
The broad topic of water resources includes areas of study in the biological sciences, enginee-
ing, physical sciences, and social sciences, as illustrated in Figure 1.1.1. The arcas in biological
sciences range from ecology to zoology, those in the physical sciences range from chemistry to
meteorology to physics, and those in the social sciences range from economics to sociology. Water
resources engineering as used in this book focuses on the engineering aspects of hydrology and
hydraulics for water supply management and water excess management. '

WATER RESOURCES MANAGEMENT

Water supply Water excess Envirenmental
management management restoration

{ ' {
I | I

Biological sciences Engineering Physical sciences Social sciences
Ecclogy Agriculture Chemistry ‘Economics
Entomology Chemical Climatology Education

Fisheries Civil Computer science Geography

Faod technology Environmental Geology History

Forestry Industrial Hydrology Law

Horticulture Mechanical Mathematics Planning

Limnology Systems Meteorology Political science
Marine science Oceanography Public administration
Microbiology Physics Resource development
Plant science ' Soil science Sociology

Public health Stafistics

Zoology

Figure 1.1.1 Ingredients of water resources management (from Mays (1996)).
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2 Chapter ]

Introduction

Comparatioe Ireigation Patterns in Upper Egypt and Mesopotamia

¥ (enrars Wonr

Mesopetamia .
A.D. {0 )

AN
s‘;','
s

Upper Egypt
A.D. 1850

—— Canals tweerener
COMUEENt wilk Rebgq) **"

~-eee- bty

e AKHMIM

Figure 1.1.2 Comparative irrigation networks in Upper Egypt and Mesopotamia. (a)
Example of linear, basin imigation in Sohag province, ca. AD 1850; (&) Example of
radial canalization system in the lower Nasharawan region southeast of Baghdad,
Abbasid (A.D. 883-1150). (Modified from R. M. Adams (1965), Fig. 9. Same scale as
Egyptian counterpart). (¢) Detail of field canal layout in b. (Simplified from R. M.
Adams (1965), Fig. 10. Figure as presented in Butzer {1976)).

Water resources engineering not only includes the analysis and synthesis of various water prob-
lems through the use of the many analytical tools in hydrologic engineering and hydraulic engi-

neering but also extends to the design aspects.

Water resources engineering has evolved over the past 9,000 to 10,000 years as humans have
developed the knowledge and techniques for building hydraulic structures to convey and store
water. Early examples include irrigation networks built by the Egyptians and Mesopotamians (see
Figure 1.1.2} and by the Hohokam in North America (see Figure 1.1.3). The world’s oldest large
dam was the Sadd-el-kafara dam built in Egypt between 2950 and 2690 B.C. The oldest known
pressurized water distribution (approximately 2000 B.C.) was in the ancient city of Knossos on
Crete (see Mays, 1999, 2000, for further details). There are many examples of ancient water sys-

4

tems throughout the world.




1.1 Background 3
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Figure 1.1.3 Canal building in the Salt River Valley with a stone hoe held in the hand without a handle. These were

the original engineers
clusters of wild huts (from Turney (1922)). (Courtesy of Salt River Project, Phoentx, Arizona.)
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4 Chapter 1 Introduction

1.2 THE WORLD’S FRESHWATER RESOURCES

Y

Among today’s most acute and complex problems are water problems related to the rational use
and protection of water resources (see Gleick, 1993). Associated with water problems is the need
to supply humankind with adequate clean freshwater. Data collected on global water resources by
Soviel scientists are listed in Table 1.2.1. These obviously are only approximations and should not
be considered as accurate (Shiklomanov, 1993). Table 1.2.2 presents the dynamics of actual water
availability in different regions of the world. Table 1.2.3 presents the dynamics of water use in the
world by human activity. Table 1.2.4 presents the annual runoff and water consumption by conti-
nents and by physiographic and economic regions of the world.

Talﬂe 1.2.1 Water Reserves on the Earth

Percentage of
global reserves

Distribution —
area Volume Laver Of total  Of fresh-
(1P km?  (10° kmd) {m) water water
World ocean 361,300 1,338,000 3,700 96.5 —
Groundwater 134,800 23,400 174 1.7 —
Freshwater 10,530 78 0.70 301
Soil meisture i6.5 02 0.001. 0.05
Glaciers and permanent snow cover 16,227 24,064 1,463 1.74 68.7
Antarctic 13,980 21,600 1,546 1.56 61.7
Greenland 1,802 2,340 1,298 0.17 6.68 -
Arctic islands 226 835 369 0.006 0.24
Mountainous regions 224 40.6 181 0.003 0.12
Ground ice/permafrost 21,000 300 14 0.022 0.86
Water reserves in lakes 2,058.7 17604 857 0.013 —
Fresh 1,2364 91 73.6 0.007 0.26
Saline 8223 854 1038 0.006 —
Swamp water 2,682.6 1147 4.28 0.0008 0.03
River flows 148,800 2.12 0.014 0.0002 0.006
Biological water 510,000 1.12 0.002 0.0001 0.003
Atmospheric water 510,000 12.9 0.025 0.001 0.04
Total water reserves 510,000 1,385,984 2,718 100 —
Total freshwater reserves 148,800 35,029 235 2.53 100

Source: Shiklomanov (1993).

Table 1.2.2 Dynamics of Actual Water Availability in Different Regions of the World

Actual water availability (10° m? per year per capita)

Area E

Continent and region {10 km?) 1956 1660 1970 1980 2000
Europe 10.28 59 54 4.9 4.6 4.1
North 1.32 392 36.5 339 327 30.9
Central 1.86 3.0 2.8 2.6 24 23
South 1.76 38 35 3.1 2.8 2.5
European USSR (North) 1.82 ' 338 20,2 26.3 24.1 209
Buropean USSR (South) 3.52 4.4 4 3.6 3.2 2.4
" North America 24.16 37.2 30.2 25.2 21.3 17.5

Canada and Alaska 13.67 384 294 246 219 189
United States 7.83 10.6 8.8 16 6.8 56
2.67 22.7 17.2 12.5 94 71

Central America




1.2 The World’s Freshwater Resources  §
Table 1.2.2 Dynamics of Actual Water Availability in Different Regions of the World (continued)
Area Actual water availability (10° m® per year per capita)
Continent and region {108 kn?) 1950 1960 1970 1980 2000
Africa 30.10 20.6 16.5 12.7 9.4 51
North 8.78 2.3 1.6 1.1 0.69 021
B South 5.11 12.2 10,3 7.6 57 3.0
g East 5.17 5.0 12 92 6.9 37
' West . 6.96 20.5 16.2 124 9.2 49
Central . 4.08 92.7 79.5 59.1 46.0 254
Asia 44.56 9.6 7.9 6.1 5.1 3.3
North China and Mongoha .9.14 38 3.0 23 1.9 1.2
South . 449 4.1 34 2.5 2.1 1.1
West 6.82 6.3 472 33 2.3 L3
South-east ' 717 ¢ 13.2 11.1 8.6 7.1 4.9
Central Asia and Kazakhstan 243 7.5 35 33 20 0.7 -
Siberia and Far East 14.32 124 112 102 96.2 95.3
Trans-Caucasus 0.19 8.8 6.9 54 4.5 30
South America 17.85 165 80.2 61.7 48.8 283
North 255 179 128 94.8 72.9 374
Brazil 8.51 115 86 64.5 50.3 322
West 2.33 979 77.1 58.6 458 25.7
Ceniral 4.46 34 27 239 20.5 104
Australia and Oceania 8.59 112 91.3 74.6 64.0 50.0
¥ Australia 7.62 35.7 284 23 19.8 150
” Oceania 1.34 161 132 108 24 735
: Source: Shiklomanov (1993).
7 E Table 1.2.3 Dynamics of Water Use in the World by Human Activity
i 1980 1990° 2000°
i 1900 1940 195¢ 1960 1970 1975
E (km® per (knt per (km® per (kut’ per (km? per {km’ per (km’® per (km® per (km?® per
;f Water users® year) year) year) year) year) year) year) (%} year) (%) year) (%)
£
Agriculture
Withdrawal 525 893 1,130 1,550 1,850 2,050 2,290 69.0 2,680 64.9 3,250 62.6
Consamption 409 679 859 1,180 1,400 1570 1,730 887 2,050 869 2,500 86.2
Industry
Withdrawal 372 124 178 330 540 612 710 21.4 973 23.6 1,280 247
Consumption 35 97 14.5 248 38.0 472 619 32 885 38 117 40
Municipal supply
Withdrawal 16.1 36.3 52.0 82.0 130 161 200 6.0 300 7.3 441 85
Consumption 4.0 9.0 14 20.3 29.2 34.3 41.1 2.1 524 22 64.5 22
Reservoirs
Withdrawal 0.3 37 6.5 23.0 66.0 103 120 36 170 4.1 220 43
Consumption 03 37 6.5 210 66.0 103 120 6.2 170 72 220 16
Total (rounded off) )
Withdrawal 579 1,060 1,360 1,990 2,590 2930 3,320 100 4,130 100 5,150 100
Consumption 417 701 804 1,250 1,540 1,760 1,950 100 2,360 100 2,900 100

2 Total water withdrawal is shown in the first line of each category, consumplive use (irretrievable water loss) is shown in the second line.
b Estimated.

TR TR

Source: Shiklomanov (1993).
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Table 1.2.4 Annual Runoff and Water Consumption by Continents and by Physiographic
and Economic Regions of the World

Mean annual Water consumption (km® per year)
runoff Aridity
" () per  index 1980 1990 2000 -
Continent and region (mm} year) (R/LP) Total kretricvable Total Imretrievable Total Iretrievable
Europe 310 3,210 o 435 127 555 178 673 222
North 430 737 0.6 9.9 1.6 12 20 13 23
Central 380 705° 0.7 141 22 176 28 205 33
South 320 564 14 132 51 184 64 226 73
European USSR (North) 330 601 0.7 18 2.1 24 34 29 5.2
European USSR (South) 150 525 1.5 134 50 159 81 200 108
North America 340 8,200 —_ 663 224 724 255 796 302
Canada and Alaska 390 5,300 0.8 41 8 57 11 97 i5
United States 220 1,700 1.5 527 155 546 171 531 194
Central America 450 1,200 1.2 85 61 120 73 . 168 93
Africa 150 4,570 - 168 129 232 165 317 211
North 17 154 8.1 100 79 125 97 150 112
South 68 349 2.5 23 16 36 20 63 34
East 160 809 22 23 18 32 23 45 28
West 190 1,350 25 19 i4 33 23 51 34
Central 470 1,909 0.8 2.8 1.3 48 21 84 34
Asia 330 14,410 B 1,910 1,380 2,440 . 1,660 3,140 2,020
North China and Mongolia 160 1,470 22 395 270 527 314 671 360
South 490 2,200 1.3 668 518 857 638 1,200 865
West 72 490 2.7 192 147 220 165 262 190
South-east 1,090 6,650 0.7 461 337 609 399 741 435
Central Asia and Kazakhstan 70 170 3.1 135 87 157 109 i74 128
Siberia and Far East 230 3,350 0.9 a4 11 40 17 49 25
Trans-Caucasus 410 77 1.2 24 14 26 I8 33 21
South America 660 11,760 — 111 71 150 86 216 116
Northern area 1,230 3,126 0.6 15 il 23 16 33 20
Brazil 720 6,148 0.7 23 10 23 14 48 21
West 740 1,714 1.3 40 30 45 12 64 44
Centrat 170 812 20 33 20 418 24 70 31
Australia and Oceania 270 2,390 29 15 38 C17 47 22
Australia 39 301 4.0 27 £ 13 34 16 42 20
Qcecania 1,560 2,090 0.6 24 1.5 33 18 4.5 23
Land area (rounded off) — 44,500 — 3,320 1,450 4,130 2,360 5190 2,900

Source: Shiklomanov (1993).

L3 WATER USE IN THE UNITED STATES

Duziegielewski et al. (1996) define water use from a hydrologic perspective as all water flows that
are a resolt of human intervention in the hydrologic cycle. The National Water Use Information
Program (NWUTI Program), conducted by the United States Geological Survey (USGS), used this
perspective on water use in establishing a national system of water-use accounting. This account-
ing system distinguishes the following water-use flows: (1) water withdrawals for off-stream pur-
poses, (2) water deliveries at point of use or quantities released after use, (3} consumptive use, (4)
conveyance loss, (5) reclaimed wastewater, (6) return flow, and (7) in-stream flow (Solley et al.,
1993). The relationships among these human-made flows at various points of measurement are
illustrated in Figure 1.3.1. Figure 1.3.2 illustraies the estimated water use by tracking the sources,

l.. .
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HAND OUT 3: Algorithm for the Computer Problem 1
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HAND OUT 4: Classification of modeling approximations (Chapter 1 of our
syllabus)

N




4/2

- Examples of modeling:
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HAND OUT 5: The Moody diagram (Chapter 1 of our syllabus)
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HAND OUT 6: Methods for obtaining roots of algebraic equations (Chapter
2 of our syllabus). Source: Alexandrou, A. (2001). “Principles of fluid mechanics.”
Prentice Hall '
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Chapter 13 « Fundamentals of Computational Fluid Dynamics

13.1

and ideas are developed in sufficient depth so that the techaiques can be readily used in
practical problems. .

Algebraic Equations

. As encountered in several cases, mathermatical models often reduce to single algebraic

equations whose solution must be obtained numerically by iteration. Recall, for instance,
from Chapter 8 that the friction factor couid be obtained by using the Colebrook formula

L e/D . 251
77 08691( +Ref) (13.1)

Since f appears tn both sides of the equation, the solution must be obtained numerically.
Similarly, in Prandt-Meyer expansion, when the flow tums through a total angle v,
the resulting Mach number M is a complicated function given by

vy +1 fy =1
= %mn-l ;}:—4_—[(M2-l)ftan‘l\/M2—l. (13.2)

The solution to this equation must also be obtained numerically.
Another example is the case of oblique shocks in which the geometry of the shock -

as a function of the incoming M is given by

pmbownt]- L (rolaa, 2 1 (13.3)
- sin 6 cos & y+l v+ 1M} , '

Given the complexity of the expression, the angle of the shock 6 as a function of the Mach
number M and deflection angle’ f must be found numerically.

13.1.1 Root of Equations

Consider a general algebraic equation of the form

y=7rx).
For most of such equations, the final objective is to find the root of the equation— that
15, the value {or values) of the unknown x; that satisfies .
F=y—f(a)=0. (134)

The problem is shown schematically in Figure 13.3. As shown in the figure, depending
on the order of F, the function F can have multiple solutions. An obvious choice (o
find the roots of Bquation (13.4) is to start guessing values of x; until we find those that
satisfy F (x;) = 0. However, this approach can be inefficient and lengthy. Fortunatcly, the
search for the roots can be accelerated by using a nwmber of numerical procedures. These
methods can also be implemented easily in computer form. We review (wo such methads:
(a) the bisection method and (b) the Newton-Raphson method.

Bisection Method

The bisection method formalizes the search for the root that lies in the range of (Xmin»
X ), Where Xpin , and Xpq, are inttial limits set by the user. During the iteration procedure,




£

Root

v SN/
X x5 \/x3

FIGURE 13.3 Multiple roots of a function.

the estimate for the root xg is assumed to be the midpoint of the current range Xy =

M, while the limits x,.;, and xna are updated depending on the sign of [ (xg)

using
If Flxp) >0 xpin = xg,

and
If #(xg) <0  Xpar = xg.

However, the above update is not unique and depends on the functional form of F. For
instance, the proper update may be the opposite —that is,

IF Flxg) > 0 xmax = Xy,

and

If Fxg) <0 xpn = x,.
The proper criterion for updating the range must be determined on 2 case-by-case basis,
by keeping track of x,: if x; between iterations remains unchanged, the criterion must be
reversed. :
The procedure is terminated when |F (xz)] =< €, where € is a predetermined small
number typically of the same order as the machine accuracy. In general, the method works
well and yields the root of the expression provided the range within which the solution
fies is known.

ion factor by solving
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Newton-Raphson Method

The Newton-Raphson method is based on Taylor's expaosion series: if x; is an esum
for the root x., the function expanded around x; is then given as

F(x,) = F(x;) -+ F'O) dx + F"(e)(dx)* + -

where primes such as F' denote differentiation with respect to x. ,

By definition, if x, is the root of F(x), then F(x,) — 0. Therefore, by conmdcnn
only the first two terms of the foregoing series, an appropriate comection dx.= x; ) —
of the current estimate x; is given as

_ Fx)
dx = xpp —x; =~ -
) [ Fiixg)

As shown in Figure 13.4, geometrically the method is equivalent to approximating the
function by a linear function using the local tangent. Formally, then, using an initial
estimate of x;, the iteration proceeds by correcting the estimate according to

xipt = xp — 2D
T Py
until {x; | — x| < €, where ¢ is again a small tolerance number (usually 1079),

In general, the method works very well having one of the fastest convergence rates
(quadratic). However, the method has two limitations: {a) unless the initial guess is suf-
ficiently close to the root, there is no guarantee that the procedure will converge; and
(b} when F' =0, the method breaks down.

X x4

Az

FIGURE 13.4 Geometric description of the Newton-Raphson method.




13.1 Algebraic Equations 507

13.1.2 Numerical integration

In many fluid problems, the solution (o
2 certain domain. For instance, in hydr

FIGURE 13.5 Schematic of numerical integration,




HAND OUT 7: Bracketing methods (Chapter 2 of our syllabus). Source:
Chapra, S. C., and Canale, R. P. (2006). “Numerical methods for engineers.”
McGraw-Hill, fifth edition.
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5.1

Bracketing Methods

This chapter on roots of equations deals with methods that exploit the fact that a funciio;
typically changes sign in the vicinity of a root. These techniques are called bracketin
methods because two initial guesses for the root are required. As the name implies, thes
guesses must “bracket,” or be on either side of, the root. The particular methods describe
herein employ different strategies 1o systematically reduce the width of the bracket an
hence, home 1n on the correct answer.

As a prelude to these techniques, we will briefly discuss graphical methods for depic
ing functions and their roots. Beyond their utility for providing rough guesses, graphic
techniques are also useful for visualizing the properties of the functions and the behav
of the various numerical methods.

GRAPHICAL METHODS

A simple method for oblaining an estimate of the root of the equation f{x) = 0 is to make
plot of the function and observe where it crosses the x axis. This point, which represen
the x value for which f{x) = 0, provides a rough approximation of the root.

The Graphical Approaché

Problem Statement. Use the graphical approach to determine the drag coefficient
needed for a parachutist of mass m = 68.1 kg to have a velocity of 40 m/s after free-fallin
for time £ = 10 s. Note: The acceleration due to gravity is 9.8 m/s%.

Solution. This problem can be solved by determining the root of Eq. (PT2.4) using th
parameters : = 10, g = 9.8, v = 40, and m = 63.1:

B(68.1
f(c) — M(] . e—(c/ﬁS.l)]O) _ 4D
[
or
667.38 :
e}y = (1 — 01088y _ 49 (E5.1.1
C -

Various values of ¢ can be substituted into the right-hand side of this equation to comput
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¢ f(<)
4 34.115
8 17.653
12 6.067
16 ~2.269
20 —8.401

These points are ploited in Fig. 5.1. The resulting curve crosses the ¢ axis between 12 and
16. Visual inspection of the plot provides a rough estimate of the root of 14.75. The valid-
ity of the graphical estimate can be checked by substituting it into Eq. (E5.1.1) to yield

667.38
14.75

which is close to zero. It can also be checked by substituting it into BEq. (PT2.4) along with

the parameter values from this example to give
9.8(68.1)
— { — —(§4.75/68. 1310 — 40.059
7R )

which is very close to the desired fali velocity of 40 m/s.

f14.75) = (1 — g OMBEELTN) 40 = 0.059

FIGURE 5.1
The graphical approach for defermining the roots of an equetion.
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FIGURE 5.2

Wusiration of o number of
general ways thal o root may
occur in an inferval prescribed
by a lower bound x and an
upper bound x,. Pads (o] and
ic] indicate that if bath f{x) and
flx) have the same sign, either
there will be no roofs or there
will be an even number of roots
within the interval. Parls (b} and
(d} indicate that it the funciion
has different signs af the end
points, there will be an odd
number of roots in the interval.

BRACKETING METHODS )

Graphical techniques are of limited practical value because they are not precise. How,
ever, graphical methods can be utilized to obtain rough estimates of roots. These estimatg
can be employed as starting guesses for numerical methods discussed in this and the nex;
chapter.

Aside from providing rough estimates of the root, graphical interpretations are impo;
tant tools for understanding the properties of the functions and anticipating the pitfails o
the numerical methods. For example, Fig. 5.2 shows a number of ways in which roots ca
occur {or be absent) in an interval prescribed by a lower bound x; and an upper bound x,
Figure 5.2b depicts the case where a single root is bracketed by negative and positive value
of f{x). However, Fig. 5.2d, where f(x;) and f{x,) are also on opposite sides of the x axi
shows three roots occurring within the interval. In general, if f(x)) and f(x,) have opposit
signs, there are an odd number of roots in the interval. As indicated by Fig. 5.2a and ¢, if}
f(xp) and f(x,) have the same sign, there are either no rdots or an even number of roots)
between the vatues.

Although these generalizations are usually true, there are cases where they do ng
hold. For example, functions that are tangential to the x axis (Fig. 5.3a) and discontinuou
functions (Fig. 5.3b) can violate these principles. An example of a function that is tangen
tial to the axis is the cubic equation f{x) = (x — 2){(x — 2)(x — 4). Notice that x = 2 make
two terms in this polynomial equal to zero, Mathematically, x = 2 is called a muitiple roo
At the end of Chap. 6, we will present techniques that are expressly designed to locat
multiple roots. :

The existence of cases of the type depicted in Fig. 5.3 makes it difficult to develop gen
eral computer algorithms gnaranteed to locate all the roots in an interval. However, whe
used in conjunction with graphical approaches, the methods described in the folowin

FIGURE 5.3

llustration of some excepiions fo the general cases depicted in
Fig. 5.2. {a) Multiple root that occurs when the funclion is langer-
ticl to the x axis. For this case, although the end poinis are of op-
posile signs, there are an even number of axis infersections for
the interval. (B) Discontinuous function where end points of oppo-
site sign bracket on even number of roots. Special sirategies are
required for determining the roois for these cases.
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sections are extremely useful for solving many roots of equations problems confronted rou-
tinely by engineers and applied mathematicians.
Use of Computer Graphics to Locate Roots

Problem Statement. Computer graphics can expedite and improve your efforts to locate
roots of equations. The function

f(x) = sin 10x + cos 3x

‘has several roots over the range ¥ — { to x = 3. Use computer graphics to gain insight into
the behavior of this function.

Solution.  Packages such as Excel and MATLAB software can be used to generate plots.
Figure 3.4a is a plot of f(x) from x = O to x = 5. This plot suggests the presence of several
roots, including a possible double root at about x = 4.2 where f(x} appears to be tangent to .

¥

IGURE 5.4
e progressive enlargement of f{x] = sin 10x + cos 3x by the computer. Such inferactive graphics
sermiis the analyst to determine that two distinct roots exist between x = 4.2 and x = 4.3,
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the x axis. A more detailed picture of the behavior of f(x) is obtained by changing the plot-
ting range from x = 3 tox = 5, as shown in Fig. 5.4b. Finally, in Fig. 5.4, the vertical scale
is narrowed further to f(x) = —0.15 to J{x) = 0.15 and the horizontal scale is narrowed 1o
x=4.2 t0 x = 4.3. This plot shows clearly that a double root does not exist in this region
and that in fact there are two distinct roots at about x = 4.23 and x = 4.26.

Computer graphics will have great utility in your studies of numerical methods. This
capability will also find many other applications in your other classes and professional
activities as well.

5.2

THE BISECTION METHOD

When applying the graphical technique in Example 5.1, you have observed {Fig. 5.1) that.
Jtx) changed sign on opposite sides of the root. In general, if f{x) is real and continuous jn’
the interval from x; to x, and f(x;) and f(x,) have opposite signs, that is,

fx) f(x) <0 (5.1):
then there is at least one real root between x; and x,.
| Incremental search methods capitalize on this observation by locating an interval
where the function changes sign. Then the location of the sign change (and consequently,
the root) is identified more precisely by dividing the inferval into a number of subintervals. -
Each of these subintervals is searched to locate the sign change. The process is repeated .
and the root estimate refined by dividing the subintervals into finer increments. We will
return to the general topic of incremental searches in Sec. 5.4.

The bisection method, which is alternatively called binary chopping, interval halving, -
or Bolzano’s method, is one type of incremental search method in which the interval is al
ways divided in half. Ii’ a function changes sign over an interval, the function value at th
midpoint is evaluated. The location of the root is then determined as lying at the midpoin
of the subinterval within which the sign change occurs. The process is repeated to obtain
refined estimates. A simple algorithim for the bisection calculation is listed in Fig. 5.5, and
a graphical depiction of the method is provided in Fig. 5.6. The following example goes
through the actual computations involved in the method.

4

FIGURE 5.5

—

Step 1: Choose lower x and uppes x, guesses for the ool such that the funciion changes
sign over the interval. This can be checked by ensuring that flxjfix,) < O.
Step 20 An estimate of the root x, Is determined by

Xk X,
%=
Step 3: Make the following evaluations 1o determine in which subinterval the root lies:
fal IF fixif{x) < O, the root fies in the lower subinterval. Therefore, sel x, = x and
return 1o step 2.
(b # fxifix) > O, the roof lies in the upper subinterval. Therefore, set x = x, and

fel WHxifix) = O, the root equals x;; lerminate the compuiation.

retum o step 2.
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IGURE 5.6
A graphicol depiction of the
* bisection method. This plot

tions from Exomple 5.3.

‘conforms 1o the first three itera-

Bisection

Problem Statement.  Use bisection to solve the same problem approached graphically in
Example 5.1. :

Solution:  The first step in bisection is to guess two values of the unknown (in the present
problem, ¢) that give vatues for f(c) with different signs. From Fig. 5.1, we can see that the
function changes sign between values of 12 and 16. Thetefore, the initial estimate of the

"rool x, lies at the midpoint of the interval

12416
==

14

Xr

This estimate represents a true percent relative error of ¢, = 5.3% (note that the true value
of the root is 14.7802). Next we compute the product of the function value at the lower
bound and at the midpoint:

F12) f(14) = 6.067(1.569) = 9.517

which is greater than zero, and hence no sign change occurs between the lower bound and
the midpoint. Consequently, the root must be located between 14 and 16. Therefore, we
create a new interval by redefining the fower bound as 14 and determining a revised root
estimate as

14416
- =

15

X =

which represents a true percent error of &, = 1.5%. The process can be repeated to obtain
refined estimates. For example, '

F14) f(15) = 1.569(—0.425) = —0.666
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Therefore, the root is between 14 and 15. The upper bound is redefined as 15, and the roe:
estimate for the third iteration is calculated as

4
U413 s

Xy =—

which represents a percent relative error of & = 1.9%. The method can be repeated unul—i :
the result is accurate encugh to satisfy your needs. ¥

In the previous example, you may have noticed that the true error does not decreasé:
with each iteration. However, the interval within which the root is located is halved with
each step in the process. As discussed in the next section, the interval width provides an
exact estimate of the upper bound of the error for the bisection method.

5.2.1 Termination Criteria and Error Estimates

We ended Example 5.3 with the statement that the method could be continued to obtain &7
refined estimate of the root. We must now develop an objective criterion for deciding wher §
to terminate the method. 1

Ant initial suggestlon might be to end the calculation when the tme error falls below ]
some prespecified level. For instance, in Example 5.3, the relative error dropped from 5.3 ‘_'
to 1.9 percent during the course of the computation. We might decide that we should ter-:
minate when the error drops below, say, 0.1 percent. This strategy is flawed because the §
error estimates in the example were based on knowledge of the true root of the function,
This would not be the case in an actual sitnation because there would be no point in usmg f_ :
the method if we already knew the root. E

Therefore, we require an error estimate that is not contingent on foreknowledge of the: ;:;
root. As developed previously in Sec. 3.3, an approximate percent relative eror £, can be-}
calculated, as in [recall Eq. (3.53)] |

new old
X — X,

Ep = 100% ¥ (32

xnew

where x™ is the root for the present iteration and x2!? is the root from the previous iteré-
tion. The absolute value is used because we are usually concerned with the magnitude Of :
¢, rather than with its sign. When &, becomes less than a prespecified stopping criterion & -_:
the computation is ferminated.

Error Estimates for Bisection

Problem Statement. Continue Pxample 3.3 until the approximate error falls below 44
stopping criterion of &, = 0.5%. Use Eq. (5.2) to compute the errors. |

Solution. The results of the first two iterations for Example 3.3 were 14 and 15. Substi-’:g:
tuting these values into Bq. (5.2) yields .

15—14
> 100% = 6.667%

{84l :1
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Recall that the true percent relative ervor for the root estimate of 15 was 1.5%. Therefore,
&, is greater than g,. This behavior is manifested for the other iterations: :

lteration Xf Xy X, £q (%) ot (%)
1 12 i6 14 S 5.279
2 14 e 15 5.667 1.487
3 14 15 14.5 3.448 1.896
4 14.5 15 14.75 1.695 0.204
5 14.75 15 14.875 0840 = 0.64]
b

14.75 14.875’ 14.8125 0.422 0.219

Thus, after six iterations g, finally falls below &, = 0.5%, and the computation can be
terininated.

These results are summarized in Fig. 5.7. The “ragged” nature of the true error is due
to the fact that, forrbisection, the true root can lie anywhere within the bracketing interval.
The true and approximate errors are far apart when the interval happens to be centered on
the true root. They are close when the true root falls at either end of the interval.

Although the approximate error does not provide an exact estimate of the true error,
Fig. 5.7 suggests that ¢, captures the general downward trend of g,. In addition, the plotex-
hibits the extremely attractive characteristic that g, is always greater than &, Thus, when

GURE 5.7

¢ and esiimated errors are
ted versus the number of

rors for the bisection method.
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g, falls below g;, the computation could be terminated with confidence that the root is:
known to be at least as accurate as the prespecified acceptable level.

Although it is always dangerous to draw general conclusions from a single exampl
it can be demonstrated that &, will always be greater than &, for the bisection method, Th
is because each time an approximate root is located using bisection as x, = (x + x,)/2,
we know that the true root lies somewhere within an interval of (x, — x)/2 = Ax/2,
Therefore, the root must lie within +Ax/2 of our estunate (Fig. 5.8). For instance, when,
Example 5.3 was terminated, we could make the definitive statement that

x =145%£05

Because Ax/2 = x™¥ — %9 (Fig. 5.9}, Eq. (5.2) provides an exact upper bound on
the true error. For this bound to be exceeded, the true root would have to fall outside the:
bracketing interval, which, by definition, could never occur for the bisection method. As
illustrated in a subsequent example (Example 5.7), other root-locating techniques do not;
always behave as nicely. Although bisection is generally slower than other methods, the:

FIGURE 5.8

Thres ways in which the interval
may bracket the root. in (o] the
true value lies ot the center of
the inierval, whereas in (b} and
{c) the true value lies near the
extreme. Nolice that the
discrepancy between the froe

value and the midpaint of the in-

terval naver exceeds holf the
interval length, or Ax/2.

FIGURE 5.9

Graphical depiciion of why the
arror estimate for bisection
[Ax/2} is equivalent o the root
aslimate for the present iteration
[x7=+} minus the root estimate for
the previous iterclion (x).
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neatness of its error analysis is certainly a positive aspect that could make it attractive for
certain engineering applications.

Before proceeding to the computer program for bisection, we should note that the
celationships (Fig. 5.9} -

new old __ Xy — Xy
A
and
X, = 5 .

can be substituted into Eq. (3:2) to develop an alternative formulation for the approximate
percent relative error

Xy — X

100% ] (5.3)
Xy + X

fa =

o

This equation yields identical results to Eq. (5.2) for bisection. In addition, it allows us to
calculate an error estimate on, the basis of our initial guesses—that is, on our first itera-
tion. For instance, on the first iteration of Example 5.2, an approximate error can be
computed as . ‘-

16 —-12
16 412
Another benefit of the bisection method is that the number of iterations required to at-

tain an absolute error can be computed a priori—that is, before starting the iterations. This
can be seen by recognizing that before starting the technique, the absolute error is

10% = 14.29%

-

o__ 0. 0_ 0
E, =x, —x; = Ax

where the superscript designates the iteration. Hence, before starting the method, we are at
the “zero iteration.” After the first iteration, the error becomes

| AxY
Eq=—
Because each succeeding iteration halves the error, a general formula relating the error and
the number of iterations, n, is

g Ax® 5.4
[ pi (3' )
If £, 4 1s the desired error, this equation can be solved for
log{Aax®/E, Ax?
n = ——CL/—A) = log, a (3.5)
log 2 E,q

Let us test the formula. For Example 5.4, the initial interval was Axy = 16 — 12 = 4.
After six iterations, the absolute error was

14,875 — 14.75|

“a = 0.0625
2
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We can substitule these values into Eq. (5.5) to give

log(4/(.0625)
= ———" =0
log 2

Thus, if we knew beforehand that ap error of less than 0.0625 was acceptable, the formulaj
tells us that six iterations woulid yield the desired result. :

Although we have emphasized the use of relative errors for obvious reasons, there willj
be cases where (usually through knowledge of the problem context) you will be able to
specify an absolute error. For these cases, bisection along with Eq. (5.5) can prov;de a4
useful root-locarton algorithm. We will explore such applications in the end- of-chapter
problenis.

5.2.2 Bisection Algorithm

The algerithm in Fig. 3.5 can now be expanded to include the error check (Fig. 5.10). Thfﬁi :
algorithm employs user-defined functions to make root location and function evaluation 8
more efficient. In addition, an upper limit is placed on the number of iterations. Finally, ang
error check is included to avoid division by zero during the error evaluation. Such would
be the case when the bracketing interval is centered on zero. For this sitvation Eq. (5.2) be: §
comes infinite. If this occurs, the program skips over the error evaluation for that iteration 3

The algorithm in Fig. 5.10 1s not user-friendly; it is designed strictly to come up w1th‘f :
the answer. In Prob. 5.14 at the end of this chapter, you will have the task of making it eas- _: '
ter to use and understand. :

FIGURE 5.10
Pseudacode for function 1o
implement bisaction.

FUNCTION Bisect{xi, xu, es, imax, xr, iter, ea}
iter = ¢
oo
xrold = xr
xro= {xl 4+ xu) /2
jter = iter + 1
IF xr # 0 THEN
ed = ABS{({xr — xrold) / xr) + 100
END IF
test = fixl} * Flxr)
IF test < O THEN

£

X = Xr
ELSE IF test = (0 THEN
Xl = xr
ELSE
ea = {
£ND IF
IF ea < es OR iter = imax E£XIT
N Do
Bisect =

END Bisect
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5.2.3 Minimizing Function Evaluations

The bisection afgorithm in Fig. 5.10 is just fine if you are performing a single root
evaluation for a function that is easy to evaluate. However, there are many instances in
engineering when this is not the case. For example, suppose that you develop a computer
program that must locate a root numerous times. In such cases you could call the
algorithm from Fig. 5.10 thousands and even millions of times in the course of a single
run.

Further, in its most general sense, a univariate function is merely an entity that returns
a single value in return for a single value you send to it. Perceived in this sense, functions
are fiot always simple formulas like the one-line equations solved in the: preceding exam-
ples in this chapter. For example, a function might consist of many lines of code that could
take a significant amount of execution time to evaluate. In some cases, the function might
even represent an independent computer program.

Because of both these factors, it is imperative that numerical algorithms minimize
function evaluations. In this light, the algorithm from Fig. 5.10 is deficient. In particular,
notice that in making two function evaluations per iteration, it recalculates one of the func-
tions that was determined on the previous iteration.

Figure 5.11 provides a modified algorithm that does not have this deficiency. We have
highlighted the lines that differ from Fig. 5.10. In this case, only the new function value at

wogram which minimizes
nelion evaluations.

udocode for bisaction sub-

FUNCTION Bisect(x!, xu, es, imax, xr, iter, ea)
iter = 0
fl= fixl1).
oo

xrold = xr
xr=(xI +xu) /2
CHFE =)
iter = iter + 1
IF xr # (0 THEN
ea = ABS({xr — xrold}) / xr) + 100

END IF
Chtesto=of
IF test < 0 THEW
X o= xr
FISE IF test > 0 THEN
x! = xr
A=
fsE
ea =1
END T
IF ea < es OR iter = imax £XIT
FND 00
Bisect = xr
END Bisact




124

BRACKETING METHODS

the root estimate is calculated. Previously calculated values are saved and merely reassigne
as the bracket shrinks. Thus, n -+ 1 funetion evaluations are performed, rather than 2n.

THE FALSE-POSITION METHOD

Although bisection is a perfectly valid technique for determining roots, its “brute-force” ap
proach is relatively inefficient. False position is an alternative based on a graphical insigh

A shortcoming of the bisection method is that, in dividing the interval from x; to x,, int
equal halves, no account is taken of the magnitudes of f(x;) and f(x,). For example, if f(x
is much closer to zero than f(x,), it is Hkely that the root is closer to x; than to x, (Fig. 5.12)
An alternative method that exploits this graphical insight is to join f(x;) and f(x,) by
straight line. The intersection of this line with the x axis represents an improved estimate o
the root. The fact that the replacement of the curve by a straight line gives a “false position™§
of the root is the origin of the name, method of false position, or in Latin, regula falsi. It i 3
also called the [inear interpolation method. E -

Using similar triangles (Fig. 5.12), the intersection of the straight line with the x axis 3§

can be estimated as

f) ) s 6;

Xy — X} Xy — Xy

which can be solved for (see Box 5.1 for details).

(5-7;

FIGURE 5.12

A graphical depiction of the
method of false position. Similar
friangies used 1o derive the
formula for the method are

shaded.
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Box 51 ' _Q({aﬁri_\\rgﬁon of the Method of Fc:is_e Position

.Vr,oss-multiply Eq. (5.6) to yield then adding and subtracting x, on the right-hand side:

.’ f(‘ri)(xl' — X)) = f(‘rk)(x!' —x) X =X = Yu f()’f;) — Ay — i f(x“)
f(-‘-‘f) - f(xu) f(xf) - f(xu)

Coilecting terms yields

xuf(xu) _ xlf(‘ru)
f():[}—-f(xﬂ) f(x[)ff(xu)

ollect terms and rearrange:

e L) = Fe] = ) — e fe)
ivide by flxi) — flxd R
o flo) — x0flx)

L (B5.1.1)
SET fle) — flx) o
fijs is one forru of the method of false position. Note that itallows . ., JO) (o = %)
o computation of the root x, as a function of the Jower and upper J) — e
iesses X and xy. I can be put in an alternative form by expanding ;o 55 the same as Eq. (5.7). We use this form because it involves
¥ one less funciion evaluation and one less multiplication than
xy flx) x ) Eq. {B5.1.1). In addition, it is directly comparable with the secant

T ) — foa

4 e PR TR

Flxy = fl,) method which will be discussed in Chap. é.
This is the false-position formula, The value of x, computed with Eq. (5.7) then replaces
whichever of the two initial guesses, x; ot x,, yields a function value with the same sign as
f(x). In this way, the values of x; and x, always bracket the true root. The process is
repeated uniil the root is estimated adequately. The algorithm is identical to the one for bi-
section (Fig. 5.5) with the exception that Eq. (5.7} is used for step 2. In additicn, the same
stopping criterion {Eq. (3.2)] is used to terminate the computation.

C} = E False Position
Problem Statement. Use the false-position method to determine the root of the same
equation investigated in Example 5.1 [Eq. (E5.1.1)].
Solution. As in Example 5.3, mitiate the compqtation with guesses of =12 and
x, = 16.
First iteration:
=12  flx) =6.0699
x, = 16 flx,) = —2.2688
—2.2688(12 - 16
x, = 16— ¢ ) = 14.9113
6.0669 — (—2.2688)
which has a true relative error of 0.89 percent.
Second iteration: -
Flu) fx,) = —1.5426
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Therefore, the root lies in the first subinterval, and x, becomes the upper limit for the ne
iteration, x, = 14.9113:
x =12 Jixn = 6.06_99
X = 149113 f(x,) = —0.2543
—0.2543(12 — 14.9113)

= 149113 — = 147942
*r = 149113 6.0669 — (—0.2543)

which has true and approximate relative errors of 0.09 and 0.79 percent. Additional nera-";
tions can be performed to refine the estimate of the roots.

A feeling for the relative efficiency of the bisection and falSe-position methods can bej
appreciated by referring to Fig. 5.13, where we have plotted the true percent relative errors)
for Examples 5.4 and 5.5. Note how the error for false position decreases much faster thari}
for bisection because of the more efficient scheme for root location in the false- posmon
method.

Recall in the bisection method that the interval between x; and x,, grew smaller dunng
the course of a computation. The interval, as defined by Ax/2 = |x, — x;{/2 for the firsi
iteration, therefore provided a measure of the error for this approach. This is not the casej

FIGURE 5.13

Comparison of the relative
errors of the bisection and the
false-position methods.
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for the method of false position because one of the initial guesses may stay fixed through-
out the computation as the other guess converges on the root. For instance, in Example 5.6
the lower guess x; remained at 12 while x, converged on the root. For such cases, the inter-
val does not shrink but rather approaches a constant value.

Example 5.6 suggests that Eq. (3.2) represents a very conservative error criteton. In
fact, Eq. (5.2) actually constitutes an approximation of the discrepancy of the previous
iteration. This is because for a case such as Example 5.6, where the method is converging
quickly (for example, the error is being reduced nearly an order of magnitude per
iteration), the root for the present iteration x™" is a much better estimate of the true value
than the result of the previous iteration x°“, Thus, the quantity in the numerator of
Eq. (5.2) actually represents the discrepancy of the previous iteration. Consequently, we
arc assured that satisfaction of Eq. (5.2) ensures that the root will be known with greater
accuracy than the prescribed tolerance. However, as described in the next section, there
are cases where false position converges slowly. For these cases, Eq. (5.2) becomes unre-
liable, and an alrg;irllative stopping criterion must be developed.

5.3.1 Pitfalls of the False-Position Method

Although the false-position method would seem o always be the bracketing method of

preference, there are cases where it performs poorly. In fact, as in the following example,

there are certain cases where bisection yields superior results.

A Case Where Bisection Is Preferable to False Position

Problem Staiement.  Use bisection and false position to locate the root of
fixy=x"%—1

between x = 0 and 1.3.

Solution.  Using bisection, the results can be summarized as

Iteration Xi Xy X, £a (%) £¢ (%)
1 0 1.3 0.65 100.0 35
Z 0.65 1.3 0.975 33.3 2.5
3 0875 1.3 1.1375 14.3 13.8
4 0875 1.1375 1.05625 v 5.6
5 0975 105625 1.015625 4.0 1.6

Thus, after five iterations, the true error is reduced to less than 2 percent. For false position,
a very different outcome 15 obtained:

Iteration Xf Xy X, Ea (76) £¢ (%)
| 8] 1.3 0.09430 Q0.6
2 009430 1.3 Q.18176 48.1 81.8
3 018176 1.3 0.26287 30.9 737
4 0.26287 1.3 (033811 22.3 &66.2
5 0.3381! 13 0.40788 171 50.2




Y

i
i
i
!

128

BRACKETING METHODS

FIGURE 5.14

Plot of fix) = x'® — 1, illustrating slow convergence of the false-posifion methed.

After five iterations, the ‘%rue error has only been reduced to about 59 percent. In addi-
tion, note that g, < &,. Thus, the approximate error is misleading. Insight into these resolts 28
can be gained by examining a plot of the function. As in Fig. 5.14, the curve violates the 8
premise upon which false position was based—that is, if f(x;) is much closer to zero than |
f(x.), then the root is closer 1o x than 10 x, (recall Fig. 5.12). Because of the shape of the 1
present function, the opposite is true.

The forgoing example iHustrates that blanket generalizations regarding root-location J
methods are usually not possible. Although a method such as false position is often supe- |
rior to bisection, there are invariably cases that violate this general conclusion. Therefore. |
in addition to using Eq. (5.2), the results should always be checked by substituting the 100! §
estimate into the original equation and determining whether the result is close to zero. Such
a check should be incorporated into all computer programs for reot location. _

The example also illustrates a major weakness of the false-position method: its oné-
sidedness. That is, as iterations are proceeding, one of the bracketing points will tend 10 §
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stay fixed. This can lead to poor convergence, patticularly for functions with significant
curvature. The following section provides a remedy.

5.3.2 Modified False Position

One way o mitigate the “one-sided” nature of false position is to have the algorithm detect
when one of the bounds is stuck. If this occurs, the function value at the stagnant bound can
be divided in half. This is called the modified false-position method.

The algorithm in Fig. 5.15 implements this strategy. Notice how counters are used to
determine when one of the bounds stays fixed for two iterations. If this occurs, the function

. value at this stagnant bound is halved.

The effectiveness of this algorithm can be demonstrated by applying it to Example 5.6.
If a stopping criterion of 0.01% is used, the bisection and standard false-position methods

{GURE 5.15

alse-position method.

‘Pacudocode for the modified‘

FUNCTION ModFa??sePos(XI , X, es, Imax, xr, iter, ea)
iter = 0
fl = fixl)
fu = f{xu)
00
xrold = xr
Xro=xu— fu* (xT — xu) / (F1 — fu)
fr = flxr}
iter = jter + 1
IF xr <> ( THEN
ed = Abs{{xr — xrold) / xr) * 100

NG IF _
test = f1 * fr
IF test < O THEN
XU = Xr .
fu = f(xu)
it =20
il=1il +1

If il = 2 THEN f1 = f1/ 2
FLSE IF fest > 0 THEN

xI = xr
fl = f(x1)
il=20
v =iy + 1
IF ju= 2 THEN fu = fu/l 2
£1SF
ea =
END IF
IF ea < es OR iter = imax THEN EXIT
END DO

ModFaisePos = xr
£ND ModfalsePos
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5.4

would converge in 14 and 39 iierations, respectively. In contrast, the modified false-
position method would converge in 12 iterations. Thus, for this example, it is somewhat.
more efficient than bisection and is vastly superior to the unmodified false-position

method. 3

INCREMENTAL SEARCHES AND DETERMINING
INITIAL GUESSES

Besides checking an individual answer, you must determine whether all possible roots have i
been located. As mentioped previously, a plot of the function is usually very useful in guid- §
ing you in this task. Another option is to incorporate an incremental search at the beginning
of the computer program. This consisis of starting at one end of the region of interest and .
then making funciion evaluations at small increments across the region. When the function
changes sign, it is assumed that a root falls within the increment. The x values at the be- §
ginning and the end of the increment can then serve as the initial guesses for one of the §
bracketing techniques described in this chapter. '
A potential problem with an incremental search is the choice of the increment length.
If the length is too small, the search can be very time consuming. On the other hand, if the |
length is too great, there is a possibility that closely spaced toots might be missed §
(Fig. 5.16). The problem is compounded by the possible existence of multiple roots. A par-
tial remedy for such cases is to compute the first derivative of the function f'(x) at the
beginning and the end of each interval. If the derivative changes sign, it suggests that a §
minimum or maximum may have occurred and that the interval should be examined more ;
closely for the existence of a possible roof. " '
Although such modifications or the employment of a very fine increment can alleviate
the problem, it should be clear that brute-force methods such as incremental search are not ;
foolproof. You would be wise to supplement such antomatic techniques with any other |
information that provides insight into the location of the roots. Such information can be
found in plotting and in understanding the physical problem from which the equation
originated.

FIGURE 5.16

Cases where roofs could be
missed because the increment
length of the search procedure
is too large. Note that the lost
root on the right is multiple and
would be missed regardiess of
increment length.
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PROBLEMS

1 Determine the real roots of f(x) = —0.5x> + 2.5x 1 4.5:

(a) Graphically.

p) Using the quadratic formula.

(c) Using three iterations of the bisection method to determine
the highest root. Employ initial guesses of x; = 5 and x, = 10.
Compute the estimated error &, and the true error g, after each
iteration.

5.2 Determine the real root of f(x) = 57— 5l 46— 2

@ Graphically.

(b Using bisection to locate the root. Employ initial guesses of
- xy=0and x, = I and iterate until the estimated error &, falls
below a2 level of &, = 10%.

Determine the real root of f{x) = —254+82x — 90x% +
o — Bt 0.7 ) ' .

): Using bisection to determine the oot to g; = 10%. Employ ini-
tial guesses of x; = 0.5 and x,, = 1.0.

¢} Perform the same computation as in (b) but use the false-
** position method and 5, = 0.2 %.

4 {a) Determine the roots of fix) = —12 —2ix + [8x% —
752> graphically. In addition, determine the first root of the
unction with (b) bisection, and (c) false pesition. For (b) and (c)
initial guesses of xy = —l and x, = 0, and a stopping criterion
o 1%. '

.5 Locate the first nontrivial root of sin x = x°
adians. Use a graphical technique and bisection w1th the initiai
iriterval from 0.5 to 1. Perform the computation until g, is less than
== 2%. Also perform an error check by substituting your final
answer into the originai equation.

Determine the positive real root of In (x*) = 0.7 (a) graphi-

, where x {5 in

nesses of x; = 0.5 and x,, = 2, and (c) using three jterations of the
alse-position method, with the same inirial guesses as in (b).
.7 Determine the real root of f{x) = (0.8 — 0.3x)/x:

). Using thres iterations of the false-position method and initial
guesses of 1 and 3. Compute the approximate error &, ard the
true error & after each iteration. Is there a problem with the
¢ resule?

8 Find the positive square toot of 18 using the false-position
sthod {o within £, = 0.5%. Employ initial suesses of x; = 4 and

9 Find the smallest positive root of the function {x is in radians)
{cos/X| = 5 using the false-position method. To locate the
gion in which the root lies, first plot this function for values of x
een (4 and 5. Perform the computation until &, falls below

ly, (b) using three iterations of the bisection method, with initial -

&y = 1%. Check your final angwer by substituting it into the origi-
nal function.

5.10 Find the positive real root of flx) = x* —8x% — 352+
450x — 1001 using the fafse-position method. Use initial guesses
ofx; = 4.5 and x,, = 6 and performs five iterations. Compute both
the true and approximate ecvors based on the fact that the root is
5.60979. Use a plot to explain your results and perform the compu-
tation to within &, = 1.0%. '
5.11 Determine the real root of x33
(b} with the false-position method o within &
guesses of 2.0 and 5.0.

5.12 Given

Fl) = —=2x% — 152 s+ 10x +2

Use bisection to determine the maximum of this {unction. Employ
initial guesses of x; =0 and x, = 1, and perform iterations until
the approximate relative error falls below 5%.

5.13 The velocity v of a falling parachutist is given by

= 80: (a) analytically, and
= 2.5%. Use initial

v = éinu (l . e~(c,r’m)r)

where g = 9.8 m/s>. For a parachutist with a drag coefficient
¢ = 15 kg/s, compute the mass m so that the velocity is v = 35 m/s
atr=9s. Use the false-position method to determine m to a fevel of
g, =0.1%.

5.14 A beam is loaded as shown in Fig, P5.14. Use the bisection
method to solve for the position inside the beam where there is no
moment.

Figure P5.14

5.15 Water is flowing in a trapezoidal chaanel at a rate of Q =
20 ms. The critical depth y for such a channel must satisfy the
equation
2
0="1- Q—B
gA2
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where g = 9.81 m/s?, A, = the cross-sectional area (m?), and B =
the width of the channel at the surface (m}. For this case, the width
and the cross-sectional arca can be related to depth y by

p4

)!
A, =3y +
)"1"2

B=3+4y and
Solve for the critical depth using (a) the graphical method, () bi-
section, and (¢} false position. For (b} and () use initial guesses of
x = 0.5 and x, = 2.5, and iterate until the approximate error falls
below 1% or the number of iterations exceeds 10. Discuss your
results.

5.16 You are designing a spherical tank (Fig. P5.16) to hold water
for a small village in a developing country. The volume of liquid it
can hold can be computed as

v zﬂhZBL’;{]Q

where V == volume [m°], & == depth of water in tank [m], and R =
the tank radius fm].

Figure P5.16

If R = 3 m, to what depth must the tank be filled so that it holds
30 m’7 Use three iterations of the false-position method to deter-
mine your answer. Determine the approximate relaiive error after
each weration.

5.17 The saturation concentration of dissolved oxygen in fresh-
water can be calculated with the equation (APHA, 1992)

"method can be used to solve for temperature in °C.

1.575701 x 10°  6.642308 x 107
T, T2
1.243800 x 10'%  8.621949 x 10!
T3 - T?

Inog = 13934411 +

where o, = the saturation concentration of dissolved oxygen iiy;
freshwater at 1 atm (mg/L) and 7, = absolute lemperature (
Remember that T, = T 4-273.15, where T" = temperature (°C).
According to this equation, saturation decreases with increasing
temperature. For typical natural waters in temperate climates, the:
equation can be used to-determine that oxygen concentration 3
ranges from 14,621 mg/L at 0°C to 6.413 mg/L. at 40°C. Given a

value of oxygen concentraiion, this formula and the bisection ‘

(a) 1f the initial guesses are set as 0 and 40°C, how many bisection
iterations would be required to determine temperature to an’
absolute error of 0.03°C? '

(b} Develop and test a bisection program fo determine T as a func;
tion of a given oxygen concentration to a prespecified absolute
error as in (a). Given initial guesses of 0 and 40°C, test your
program for an absolute -error.= 0.05°C and the following
cases: oy = 8, 10 and 12 mg/L.. Check your results.

5.18 Integrate the algorithm cutlined in Fig. 5.10 into a complete,

user-friendly bisection subprogram. Among other things: :

{a) Place documentation statements throughout the subprogram ‘Lo
identify what each section is intended to accomplish.

(b) Label the input and output.

(€) Add an answer check that substitutes the root estimate into thﬁ
original function to verify whether the final result is close to ze ;

{d) Test the subprogram by duplicating the computations from
Examples 5.3 and 5.4. 5

5.19 Develop a subprogram for the bisection method that miliz

mizes function evaluations based on the psendocede from Fig. 3.11.

Détermine the number of function evaluations (n) per total itera:

tions. Test the program by duplicating Example 5.6.

5.20 Develop a user-friendly program for the false-positiofl

method. The structare of your program should be similar to the

bisection algorithm outlined in Fig. 5.10. Test the program by
duplicating Example 5.5. -

5.21 Develop a subprogram for the false-position method that 7%

minimizes function evaluations in a fashion similar to Fig. 5.1

Determine the number of function evaluations {r) per total iterd*

tions. Test the program by duplicating Example 3.6. .

.22 Develop a user-friendly subprogram for the modified false:

position method based on Fig. 5.15. Test the program by determiﬂf :

ing the root of the function described in Example 5.6. Perform 2

number of runs until the true percent relative error falls beldW

0.01%. Plot the true and approximate percent relative errors versis

number of iterations on semilog paper. Interpret your resulis.




HAND OUT 8: Open methods (Chapter 2 of our syllabus). Source: Chapra,
8. C., and Canale, R. P. (2006). “Numerical methods for engineers.” McGraw-Hill,
fifth edition. '




Open Methods

For the bracketing methods in the previous chapter, the root is located within an interval
prescribed by a lower and an upper bound. Repeated application of these methods always
results in closer estimates of the true value of the root. Such methods are said to be con-
vergent because they move closer to the truth as the computation progresses (Fig. 6.1a).

In contrast, the open methods described in this chapter are based on formulas that
require only a single starting value of x or two starting values that do not necessarily bracket

FIGURE 6.1

Graphical depiction of the
fundamental differance between
the [a] bracketing and (b} and
{c} open methods for ool
Jocation. In (o), which is the
isection method, the roat is
constrained within the interval
prescribed by x, and x,. In
nteast, for the opan method
epicted in (b} and (), a

ormuic is used o project from
{0 %) inan erative fashion.
hus, the method can either (b}
iverge or |l converge rapidly,
spending on the value of the

=
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6.1

the root. As such, they sometimes diverge or move away from the true root as th
computation progresses (Fig. 6.14). However, when the open methods converge (Fig. 6.1¢
they usually do so much more quickly than the bracketing methods, We wiil begin our di
cussion of open techniques with a simple version that is useful for illustrating their gener
form and also for demonstrating the concept of convergence.

SIMPLE FIXED-POINT ITERATION

As mentioned above, open methods employ a formula to predict the root. Such a formula®
can be developed for simple fixed-point iteration {or, as 11 is also called, one-point iteration”
o successive substitution) by rearranging the function f{x) = { so that x is on the left-han
side of the equation: ’

x = g(x) , (6.

This transformation can be accomplished either by algebraic manipulation or by simpk
adding x to both sides of the original equation. For example,

X2 —2x4+3=0
can be simply manipulated to yield

sz—f—S
T2

whereas sin x = 0 could be put into the form of Eq. (6.1) by adding x to both sides to yiel

X =sinx -+ x

The utility of Eq. (6.1) 1s that it provides a formuia 1o predict a new value of x as a
fonction of an old value of x. Thus, given an initial guess at the root x;, Eq. (6.1) can be used
to compute a new estimate x;; as expressed by the iterative formula

s

Xig1 = g{x) (6.2} 2
As with other iterative formulas in this book, the approximate error for this equation can be 3
determined using the error estimator {Eq. (3.5)]:

Xipl = X

100%

£g =

Af+i

Simple Fixed-Point iteration
Problem Statement.  Use simple fixed-point iteration 1o locate the root of f{x) = ¢~ —~ . =
Solution,  The function can be separated directly and expressed in the form of Eq. (6.2) a5

Xppp =7
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Starting with an initial guess of xp = 0, this iterative equation can be applied to compute
i x; &q {%) ¢ {%)
O 0 100.0
] F.00CC00 100.0 76.3
2 0.36787% 171.8 35.1
3 0.692201 46.9 22.1
4 0.500473 38.3 1.8
5 0.606244 17.4 6.89
o] 0.54539%96 11.2 3.83
7 0.579612 5.90 2.20
8 0.560115 3.48 1.24
Q 0.571143 1.93 0.705
10 0.564879 1.11 £.309
- ¥
Thus, each iteration brings the estirnate closer to the true value of the root: 0.56714329,

6.1.1 Convergence

Notice that the true percent refative error for each iteration of Example 6.1 is roughly pro-
poriional (by a factor of about 0.5 to 0.6) to the error from the previous iteration. This prop-
erty, called linear convergence, is characteristic of fixed-point iteration,
Aside from the “rate” of convergence, we must comment at this point about the
“possibility” of convergence. The concepts of convergence and divergence can be depicted
graphically. Recall that in Sec. 5.1, we graphed a function to visualize its structure and be-
havior (Example 5.1). Such an approach is employed in Fig. 6.2a for the function f(x) =
P e™* — x. An alternative graphical approach is o separate the equation into two cormponent
parts, as in

filx) = folx)
Then the two equations

yi = fi(x) ‘ (6.3)
and ‘

¥ = folx) . (6.4)

can be plotted separately (Fig. 6.2b). The x values corresponding to the intersections of
these functions represent the roots of flx) = 0.

TR

The Two-Curve Graphical Method

Problem Statement. Separate the equation e™ — x = ( into two parts and determine its
root graphically.

i ¥
N T 2t
[ sy

Solution. Reformulate the equation as y; = x and y, = ¢~ The following values can
be computed:

o




il

f
|
|
i
!

136 OPEN METHODS
x  w y2
0.0 [6X¢} 1.000 .
Q.2 Q.2 0819
0.4 0.4 0.670
0.6 0.6 {.549
0.8 08 0.449
1.0 1.0 0.348

These points are plotted in Fig. 6.25. The intersection of the two curves indicates a root
estimate of approximately x = 0.57, which corresponds to the point where the single curve
in Fig. 6.2a crosses the x axis.

FIGURE 6.2
Two alkernative graphical methods for determining the root of flx] = &7 — x_ {a] Root at the

point whare it crosses the x axis; Eb} root at the intersection of the component functions.
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The two-curve method can now be used to illustrate the convergence and divergence
of fixed-point iteration. First, Eq. (6.1) can be re-expressed as a pair of equations y; = x
and y; = g(x). These two equations can then be plotted separately. As was the case with
Egs. (6.3) and (6.4), the roots of f(x) =0 correspond to the abscissa value at the intersec-
tion of the two curves. The function y; = x and four different shapes for y; = g(x) are plot-
ted in Fig. 6.3.

For the first case (Fig. 6.3a), the initial guess of xg is used to determine the correspond-
ing point on the y, curve fxq, glxg)]. The point (x, x) is located by moving left horizontally
to the y, curve. These movements are equivalent to the first iteration in the fixed-point
method:

x| = glxq)

Thus, in both the equation and in the plot, a starting value of x, is used to obtain an estimate
of x;. The next iteration consists of moving to [x;, g(x,)] and then to (x4, x2). This iteration

¥

ition. Graphs {a} ond {c) are
lled monatona patterns,
secs {b] and {d) are called

4

j

o o
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_Box 6.1

From studying Fig. 6.3, it should be clear that fixed-point iteration
converges if, in the region of interest, |g'(x}| < 1. In other words,
convergence occurs if the ma¥nitude of the slope of g{x) is less
than the slope of the line f{x) = x. This observation can be demon-
strated theoretically. Recall that the iterative equation is

Xivr = 8{x;)
Suppose that the true solution is
j X = g(x.)
' Subtracting these equations yields
Xr = X1 = g{x) — glx;) (B6.1.1)

The derivative mean-value theorem {recall Sec. 4.1.1) states that if
a function g(x) and its first derivative are continuous over an inter-

I'4 } vala < x < &, then there exists at least one value of x = & within
N the interval such that
) By —gla
gy = )~ gle) (B6.1.2)
b—a

The right-hand side of this equation is the slope of the line joining
g{a) and g(b). Thus, the mean-value theorem states that there is at
teast one point between g and b that has a slope, designated by g'(£),
which is parallel to the line joining g(a) and g(b) (recall Fig. 4.3).

is equivalent to the equation

Xy = g(x3)

Convergence of Frxed Point iferofton

AN B R T A DI S L T T T e e s, D T e R G i e

Now, if we let a =x; and b = x,, the right-hand side of B
(B6.1.1) can be expressed as

g(X,—) - g()c,-) = {x, _xi)gl(";:)

where £ is somewhere between x; and x,. This result can then
substituted into Eq. (B6.1.1) to yield

X = Xpgy = (X — %) 8" (&) (B6.1.

If the true error for iteration i is defined as
E;i =X —x

then Eq. (B6.1.3) becomes
Eiip1 = &' () E;

Consequently, if |g'(x)| < I, the errors decrease with each iteratio
For |g'(x)! > 1, the errors grow. Notice also that if the derivative-
positive, the errors will be positive, and hence, the iterative soluiig
will-be monotonic (Fig. 6.3a and c}. If the derivative is negativ
the errors will oscillate (Fig. 6.36 and d).

An offshoot of the analysis is that it also demonstrates that whe
the method converges, the error is roughly proportional to and les
than the error of the previous step. For this reason, simple ﬁxcd
point jteration is said to be linearly canvergen.

ez

The solution in Fig. 6.3% is convergent because the estimates of x move closer to th
root with each iteration. The same is true for Fig. 6.35. However, this is not the case _
Fig. 6.3c and d, where the iterations diverge from the root, Notice that convergenct
: seems (o occur only when the abselute value of the slope of y; = g(x) is less than th
I slope of y, = x, that is, when |g'(x)| < 1. Box 6.1 provides a theoretical derivation o

this result.

6.1.2 Algorithm for Fixed-Point Iteration

The computer algorithm for fixed-point iteration is extremely simple. It consists of a loop
PR to iteratively compute new estimates until the termination criterion has been met. Figure 6-
S presents pseudocode for the algorithm. Other open methods can be programmed in a simi:
lar way, the major modification bemg to change the iterative formula that is used to compﬂt"’ :
the new root estimate.

-
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seudocods for fixed-point
rafion. Note that other open ‘
ethods can ba cast in this gen-
ral format.

FUNCTION Fixpt(x0, es, imax. iter. ea)
xr= x0
iter =
oa
xrold = xr
xr = gixrold)
iter = iter + 1
IF xr + 0 THEN

og = | X0 xmi’d._ 100
Xr
ENDFF
IFea < es OR iter = imax EXIT
END G0
Fixpt = xr
END Fixpt

dphical depiction of the
ewion-Raphson method.
ngent o the function of x;
is, Flxl] is extrapolated

n fo the x axis fo provide
stimate of the oot at x, ;.

6.2

THE NEWTON-RAPHSON METHOD

Perhaps the most widely used of all root-locating formulas is the Newton-Raphson equa-
tion (Fig. 6.5). If the initial guess at the root is x;, a tangent can be extended from the point

{xi. f(xp}]. The point where this tangent crosses the x axis usually represents an improved
estimate of the root.




R
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The Newton-Raphson method can be derived on the basis of this geometrical inter
pretation (an alternative method based on the Taylor series is described in Box 6.2). As in
Fig. 6.5, the first derivative at x is equivalent to the slope:

) —0
Fim) = Jt) =0 (6.5)

i — Xip

which can be rearranged to yield

which is called the Newton-Raphson formula.

Newton-Raphson Method
Problem Statement. Use the Newton-Raphson method to estimate the root of )
e * — x, employing an initial guess of x; = 0.
Solufion. . The first derivative of the function can be evaluated as
@) =—e*—1
which can be substituted along with the original function into Eq. (6.6) to give

e —x;
Xipl = X — e 1

Starting with an initial guess of x; = 0, this iterative equation can be applied to comput

i x; er (%)
0 0 100

1 0.500000000 “ 118

2 0.566311003 ; 0.147

3 0.567143165 0.0000220
4

0.567143290 <1078

Thus, the approach rapidly converges on the true root. Notice that the true percent relaitv
error at each iteration decreases much faster than it does in simple fixed-point iteratio:
{compare with Exampie 6.1).

6.2.1 Termination Criteria and Error Estimates

As with other root-focation methods, Eq. (3.5) can be used as a termination criterion. In ad
dition, however, the Taylor series derivation of the method {(Box 6.2) provides theoretica
insight regarding the rate of convergence as expressed by £y, = O(E ). Thus the erro
should be roughly proportional to the square of the previous error. In other words, the
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%de from the geomertric dertvation [Eqs. (6.5) and {6.6)], the
2wt0n-Raphson method may also be developed from the Taylor
eries cxpansion. This alternative derivation is useful in that it also
ovides Insight into the rate of convergence of the method.

Recall from Chap. 4 that the Taylor series expansion can be rep-

sented a8
Flreesd = fO) + ) (g — x)

. fﬂ(E)
+ 2!

2

Cripr — x:)° (B6.2.1)

here # lics somewhere in the interval from x; to x;, | . An approxi-
yie version is obtainable by truncating the series after the first
rivative term.
:f(—’fi+l) 2 fl) + e —x) .
V;thc intersection with the x axis, flx;;,) would be equal to
to, or

0= fla) + f (o —x) (86.2.2)
iich can be solved for
=y flx)

i+1 i f’ (x;)

phson formula using a Taylor series.

‘Aside from the derivation, the Taylor series can also be used o
imate the error of the formula. This can be done by realizing that
“he complete Taylor series were employed, an exact result would

SpprEn s ot e R e AT e T S T T O L R B

i
.
WL

error, as 1a

E ~ ‘“fﬂ(xr) 2
[ N N T
2f"(x)

fllxy=—e*—1

Box 6.2 De;_iv__qﬁgn _gnd Error _Anc:l_ysis_ o_F fhg Ne_wtgangphson M_eihod

be obtained. For this situation x;,; = x,. where x is the true value
of the root. Substituting this valuc along with f(x.} =0 into
Eq. (B6.2.1) yields

0= flx) + [} —x) + fz(lé) (o~ x;)? (B6.2.3)
Equation (B6.2.2) can be subtracted from Eq. (B6.2.3} to give
0= F{x)x — xigr} + %(M - 1) (B6.2.4)

Now, realize that the error is equal to the discrepancy between x;,
and the true value x,, as in

Ei.i+£ =X ™ Xip
ind Eq. (B6.2.4) can be expressed as

f”{é)
21

0= f{x)E i1 + EL, (B6.2.5)
If we assume convergence, both x; and £ should eventually be ap-
proximated by the root x,, and Eq. (B6.2.3) can be rearranged to
vield

A_‘f’! (xr) Ez ‘
2f ey
According to Eq. (B6.2.6), the error s roughly proportional to the
square of the previous error. This means that the number of correct
decimal places approximately doubles with each iteration. Such
behavior is referred to as quadratic convergence. Example 6.4
manifests this property.

Eiiy) = (B6.2.6)

R S

number of significant figures of accuracy approximately doubles with each iteration. This
behavior is examined in the following example.
Error Analysis of NewtonRaphson Method

Problem Statement.  As derived in Box 6.2, the Newton-Raphson method is quadrati-
cally convergent. That is, the error is roughly proportional to the square of the previous

(E64.1)

Examine this formula and see if it applies to the results of Example 6.3.

Solution.  The first derivative of f(x) = ™ — xis

[
4
H
4
%
i
i
L
b
i
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which can be evaluated at x,=10.56714329 as f’(0.56714329).= —1.56714329, The

second derivative is :
[nd

frxy=e™"

“ which can be evaluated as £7(0.56714329) = 0.56714329. These results can be substituted

into Eq. (E6.4.1) to yield

0.56714329

By &m0
Ll 2(—-1.56714329)

E}, = 0.18095E7;

From Example 6.3, the initial error was F, g = 0.56714329, which can be substituted into
the error equation to predict

E; 1 = 0.18095(0.56714329)? = 0.0582

which is close to the trie error of .06714329. For the next iteration,
E; 5 = 0.18095(0.06714329)* = 0.0008158

which alsorc0mpar_e,s favorably with the true error of 0.0008323. For the third iteration,
E, 3 2 0.18095(0.0008323)% = 0.000000125

which is the error obtained in Example 6.3. The error estimate improves in this manner
because, as we come closer to the root, x and £ are better approximated by x, [recall our
assumnption in going from Eq. (B6.2.5) to Eq. (B6.2.6) in Box 6.2]. Finally,

E, 4 = 0.18095(0.000000125)* = 2.83 x 107"

Thus, this example illustrates that the error of the Newton-Raphson method for this case is,
izt fact, roughly proportional (by a factor of 0.18095) to the square of the error of the pre-
vious iteration.

6.2.2 Pitfalls of the Newton-Raphson Method

Although the Newton-Raphson method is often very efficient, there are situations where it
performs poorly. A special case—muitiple roots—will be addressed later in this chapter.
However, even when dealing with simple roots, difficulties can also arise, as in the fellow-
ing example.

Example of a Slowly Converging Function with Newion-Raphson

Problem Statement. Determine the positive root of f{x) = x'® = I using the Newton-
Raphson method and an initial guess of x = 0.5,
Solution.  The Newton-Raphson formula for this case is

X0 —1

10x;

Xitl =X —

which can be used to compute
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Iteration x

0.5
51.65
46.485
41.8365
37.65285
33.887565

B W — O

o, 1.0000C00

Thus, after the first poor prediction, the technique is converging on the true root of 1, but
at a very slow rate.

' ¥

-

Aside from slow convergence due to the nature of the function, other difficulties can
arise, as illustrated in Fig. 6.6. For example, Fig. 6.0a depicts the case where an inflection
point [that is, "(x) = 0] occuss in the vicinity of a root. Notice that iterations beginning at
xp progressively diverge from the root. Figure 6.65 illustrates the tendency of the Newton-
Raphson technique to oscillate around a local maximum or migimum. Such oscillations
may persist, or as in Fig. 6.6b, a near-zero slope is reached, whereupon the solution is sent
far from the area of interest. Figure 0.6¢ shows how an initial guess that is close to one root
can jump to a location several roots away. This tendency to move away from the area of
interest is because near-zero slopes are encountered. Qbviously, a zero slope [ f/(x) = 0] is
truly a disaster because it causes division by zero in the Newton-Raphson formula
{Eq. (6.6)]. Graphically (see Fig 6.6d), it means that the solution shoots off horizontally
and never hits the x axis.

Thus, there is no general convergence criterion for Newton-Raphson. Its convergence
depends on the nature of the function and on the accuracy of the initial guess. The only
remedy is to have an initial guess that is “sufficiently” close to the root. And for some
functions, no guess will work! Good guesses are usually predicated on knowledge of the
physical problem setiing or on devices such as graphs that provide insight into the behav-
ior of the solution. The lack of a 'general’ convergence criterion also suggests that good
computer software should be designed t recoguize slow convergence or divergence. The
next section addresses some of these issues.

6.2.3 Algorithm for Newton-Raphson

An algorithm for the Newton-Raphson method is readily obtained by substituting Eq. (6.6)
for the predictive formula [Eq. (6.2)] in Fig. 6.4. Note, however, that the program must
also be modified to compute the first derivative. This can be simply accomplished by the
inclusion of a user-defined function.

Additionally, in light of the foregoing discussion of potential problems of the Newton-
Raphson method, the program would be improved by incorporating several additional
features:
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FIGURE 6.6

Four cases where the NewionRaphson methad exhibits poor convergence.
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6.3

=~

A plotting routine should be included in the program.

2. Atthe end of the computation, the final root estimate should always be substituted into
the original function to compute whether the result is close to zero. This check partially
guards against those cases where slow or oscillating convergence may lead to a small
value of &, while the solution is still far from a root.

3. The program should always include an upper limit on the number of iterations to guard
against oscillating, stowly convergent, or divergent solutions that could persist inter-
minably.

4, The program should alert the user and take account of the possibility that f'(x) might

equal zero at any time during the computation.

- THE SECANT METHOD

A potential problem in implementing the Newton-Raphson methaod s the evaluation of the
derivative. Although this is not inconvenient for polynomials and many other functions,
there are certain functions whobe derivatives may be extremely difficult or inconvenient to
evaluate. For these cases, the derivative can be approximated by a backward finite divided

gifference, as in (Fig. 6.7)
SO ) = flx)

X — X

Fix) =

FIGURE 6.7
Graphical depiction of the secant methad. This techaique is similar to the Newlon-Raphson tech-

nigue [Fig. 6.5) in the sense thal an eslimate of the root is predicted by extrapolating o tangent
of the function to the x axis. However, the secant method uses a difference rather than a deriva-
five fo estimate the slope.
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HAND OUT 9: Behavior of the Colebrook-White equation (Chapter 2 of our
syllabus). :
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HAND OUT 10: Example of the behavior of the Iteration of a point method
(Chapter 2 of our syllabus).

-
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HAND OUT 11: Picture of flow in the Hayden-Rhodes Aqueduct, Central
- Arizona Project (Chapter 2 of our syltabus). Source: Mays, L. (2006). “Water
resources engineering.” John Wiley and Sons.




5.1 Steady Uniform Flc.

Figure 5.1.2 Hayden-Rhodes Aqueduct, Central Arizona Project. (Courtesy of the .S, Bureau of Reclamation, (1985},

photograph by Joe Madrigal jr.)




HAND OUT 12: Picture of pollution (Chapter 4 of our syllabus). Source:
Cover of the book by Altinakar, M., and Graf, W. (1998). “Fluvial Hydraulics.”
John Wiley and Sons.
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HAND OUT 13: Description of the LAKE model (Chapter 4 of our syllabus).
Source: ILEC, International Lake Environment Committee.
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HAND OUT 14: Flood reservoir routing (Chapter S of our syllabus). Source:
Adapted from classes from Prof. Bedient of Rice University.

O




AnsiaATun 901y
JusIpag g difIyd AQ SOSSe[d WOIJ PAJIPOIA

SUPNOY
A10449282Y POO]J JO MI149Y




SeX3a], JO AnunoD [[IH ‘We(] pPIo1JSUuBIAl

sexaJ ‘unpsny
‘weq pjaysuep

(Y
R




poaderap s1 burwiny moinQ .
() sy, '
poonpazx axe syyead mopno . _
u,[9y 2h1reyssi( - 9abeio)s . VA )
oSe101g XeN | :
ydexboipAy mopyno | L S XEN |
(<}
ydexboipAy mopjur . R
, . awn jo s
.h..m_— 9 .v RCHE) \ # mu
ﬁ.oﬂdﬁhwo .m .Fﬁ“.._.g. mhﬂﬂ.uphﬂ.m .HOHH..F”OU yead o _:,:E:cm:xﬁﬁ] M
2y} ybnoay) 31 bursesarax pue o —
‘I9)eM BUIIO)S S)O® IIOAIDSIY
: (v}

W]

>y

MO

bunnoy sionordy

—tf—

MO[JUf




(e) 1"+ 24051

(sAep) awuty,
L 9 ¢ 14

_ _ m !

— 000°S
A0IINO

¢ Aep 10] 25URYD 950IOIS

N o__w& — 000 01

b@l B
o O—-1

(sjo)D

MOJINO pUE MOJU




(8) 1"t [0Sy

(sAep) owiiy
vl ¢t <1  IT Of 0 8 L 9
f _ _

f

—000°S
MOPINO .

(sP)O

¢ Aep 10] 28urld 288 I0IS

BOQQH — 00001

Kep yoea 10§ 1eoday N

T =2/(0+0)—¢/(*1+°])
aw} / abeuols ui abueyd =

MOIJINO puE MOJU

™ -
R




(9)T ¥ 2131
= -
/ A

sllom 1o ‘saoyiio ‘sadid sayjle
10} yydap jo uoljouny se payndwiod ag ues smopyIngo -

S$92.N0S
N3A paseq g|9 10 sdew oydeisbodo) s|qgejieae asn

syjdap jualayip |eI9ASS Je ealde adeLINS djenjeAy .

abe.uo)s buiunwuisyag

\x\ﬁj ,,,\.J.,.‘/
i ;
.ﬂé.\& : R—




adig

pauIquio)

/

sllam 10 sadid uay3ie 10} uoeAs|d
JO uonouny se pajndwod aq ueds smoyng -

AydeiBodo) jo uonouny e Ajobue| s1 abeiolg .

SJO Ul MO|JINQ "SA }-aioe ul abelo)s Jo jo1d -

MO[JINnO- 8bk.l0)s JeaidA




| Con (4
doys own yoeo 1eadoy S WoJ} " 104 9A|0S

SHY J10j ub3 aAjog

(8)G ] 2ME1]

(utur) oumy,

o1 opl 0Tl QED o,w c_o o,w 0z 0 o h.o :o&. mm w ;ocx

)))))

S
=
[t ]

-\ /. |umouy siub3jo gHT

i
-+
N

=
A

(8J0) moid

i
o
=t

L] (sp)mompng - o=
(s12) moppu] ——

( Nﬁl _ (1 ENNNI z
rmfwmw m WL+ ™

i
<
v

g
=
O

N ™ <

N‘_‘

buiinoy JI0NI8S8Y

o
L




| ¢ 90018 0}
2119 wouj sabues sawin|oA RS W% Y W SRS ;
—1 il
7 HESESEA?
1 &«w.\.:.mv.k/ NH A/ _u.m.ﬂ
(z3 91¥°L1L 01 0009) B3IV 7 S
} 0 = Y Je ad4uQo P e
¥ 0'S=Yleisaldo diop [ e :
"921JLI0 pUE JI9M JO | e
S)SISUO0D }3]3N0 }ey] 9}0N REE

bunnoy puod ejdwex7

o O - C
! . i : L
. . . . . ffu.i. S



*sajeld MO|} 921110
pue Jlam Jo wns Y N e -
SI D 9IdYM O SA O +IP/SC 7 e % |
=2 SRR
‘ . ,ﬁx? BO_L_Q
uonesipuj - abe.uo}s
]
Y SA |OA pue y dojaae( SEEmas-—mm=sn e
el o
Yy sA (l1am) p dojaneq _ R m——— |
s\m\\u .mumw,ﬁ 0
Y sA (9o1140) © dojana = |

bunnoy puod sjdwex3




°S wol} ¢ 10} aA[0S
(‘O +IPFSZ) -- 10j ub3z aAjog "¢
19]3N0 WO} D JO Ud) SBe § MOUY| 7

} [enjiul 3e umouy s| ub3 Jo SHT L
\

¢ PN _ (i IMNM.. z I
o0

uoneoipu| ebe.io)s

N

oy




"QAIND UONBDIPUT 258I0NS

(9)$ 4 =281

(s19) O +1V/ST
00S 00¥ 00€ 00T 00T 0

SUI3ag MO[J I1d M

-
=
(s10) O

............................... ; 0ST

00¢

(3no) ® 9onpoud 03} BUIqUIOD MO} JI1dM + MO|) adid
ejep j93no pue Aydeibodo) wouy padojanag -

(O + 1P/ SZ) ‘uonjesipu; abeloys pue P sajeRY -

oAIND uoneaipul ebeio)s

P
b




UOnBIIPU-038I0IS

€LY 651 018 b LT L
00T 67 SIS | ISt | S
0ST 9T PLE | 0°€l ¥
901 44 €ST | 011 ¢

69 81 1'61 6 4

¢ €1 89 S'L I

0 0 0 9 0

$§9 §JO 1 <01 Y01 -4
"O+IP/ST | 18010 | [oA W) | eaxy | JySoy

sinduy uoyvdoipuy a8v.103§




- 77T U0 oS puy

¢6¢e ¢ GIC 'SPl 0L 0¢ 09
v O ¢9CC ¢ocl 06 0 0¢S
['8¢C 7ol V8 Ol1 0¢ 0v
0'v¢C 7 0el v 0¢ 001 09 0¢
9 L1 9°¢9 9°¢ 09 Ot 0¢
CL 0¢ 0 0¢ 0¢ Ol
0 0 0 0 0 0
T&AO.T
O | WSy O-wist | M+ T o,

SHNSIY UONVIIPUT 2SD10]§

PN
£ i
\f v\




‘syderdoIpAy
()¢ pd 2In31]

(urwr) ey,

PR : _ _ 0
~ [
v_ﬂ s
. +
O e QR ; £ ] . OH
* ’
~ /
e, x.// ....................................................... .\..\.Jw .............. 10z
S +

||
A
|
; T 7
r
"
//f
TNy
A
\
>
o
(sjo) molq

+ N\ 7
TSSOSO OSSO U UUUSPR PV SRR X O <1 7_ ......... 1 0%
L (SIO) MOTTINO - = = = | O e 10¢

(Sp) mopu]
I | ] i J ] &5 ] O@

s)insay bunnoy [-S

(L



‘syderSoIpAy
(8)S #d 2In3L]

(urw) s

ONH n O\NH . Q\NJH. N 09 O 0¢ \OJ
o a\!.lr_A... T = T 7 T ~ \O
/\/VT/ ..T\
7 : .:..\.\ ....... 40T
S pasealouf y
- e NRIRE. o TSRO SR . S 107
mlllzn . +
P A H < O[ﬁ!l._ﬂfd ............. g 4 0O€
S T - < L N T T, . O._V
L (SI0) MOTIINQO - = = = oo O T AU 1 0¢
(830) mopyuy
1 | | | | r“.\ i O@

(s30) molq

synsay Bunnoy |-S

O




yoeay JaAly

AMOIING

MOTIU]
@nf-s ©
sutjed PoqIoary
_|\\\\\\.\¢|

O & N
D=1 paqlaary

R ]
O —— ~—
Susiy POYISATY

OB I2A]

MOPHTNO)

AMO[JU]

) 9]

ucH 1D =0) MO[J Hap\

(HY) =0
O)f=5§

(mofy 21110} § Y

110A19s31 |00d [9AaT]

S

THMOATASY 00 ]2A27]

 (mojpnem) O ——

bunnoy
IIOAIBSBY
"'SA JOAIY
'suosirieduw o)




HAND OUT 15: Types of backwater (Chapters 5 and 6 of our syllabus).
Source: Mays, L. (2006). “Water resources engineering.” John Wiley and Sons.




110 Chapter S Hydraulic Processes: Opea Channel Flow

dyldz = + : (@)

£ : Horizontal slope
. ! Figure 5.3.3 Flow profiles (from Chow (1959)).




HAND OUT 16: Numerical solution for backwater curves (Chapters 5 and 6
of our syllabus). Source: pages from Chow, V. T. (1959). “Open-channel hydraulics.”
Mc-Graw Hill.
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268 GRADUALLY VARIED FLOW

Solution. The step computations are arranged in tabular form, as shown in Table
10-6.  Values in each column of the tahle are explained as follows:

Col. 1. Section identified by station number such as “station 1 + 55.” The
location of the stations is fixed at the distances determined in Example 10-7 in order
to compare the procedure with that of the direct ‘step method.

Col. 2. Water-surface elevation at the station. A trial value is first entered in
this column; this will be verified or rejected on the basis of the computations made n
the remaining columns of the table. For the first step, this elevation must be given
or assumed. Since the elevation of the dam site is 600 m.s.l. and the height of the
dam is 5 ft, the first entry is 605.00 m.s]l. When the trial value in the second step
has been verified, it becomes the basis for the verification of the trial value in the
next step, and so on. '

Col. 3. Depth of flow in ft, corresponding to the water-surface elevation in col. 2.
For instance, the depth of flow at station 1 + 55 is equal to water-surface elevation
minus elevation at the dam site minus (distance from the dam site times bed slope),
or 605.048 — 600.000 — 155 X 0.0016 = 4.80 ft. '

Col. 4. Water area corresponding fo y in col. 3

Col. 5. Mean velocity equal to the given discharge 400 cfs divided by the water
area in col. 4 '

Col. 6. Veloeity head in ft, corresponding to the velocity in col. 5

Col. 7. Total head computed by Eq. (10-47), equal to the sum of Z in col. 2 and
the velocity head in col. 6 -

Col. 8. Hydraulie radius in ft, corresponding to v in col. 3

Col. 8. Four-thirds power of the hydraulic radias

Col. 10. Friction slope computed by Eq. (9-8), with n = 0.025, ¥ from col. 5,
and R% from col. 9 _

PN . Col. 11.  Average friction slope through the reach between the sections in each
K J : step, approximately equal to the arithmetic mean of the friction slope just computed
in col. 10 and that of the previous step
Col. 12, Length of the reach between the sections, equal to the difference in sta-
tion numbers between the stations ' .
Col. 13.  TFriction loss in the reach, equal to the product of the values in cols. 11
" and 12.
Col. 14. Eddy loss in the reach, equal to zero .
- Col. 15. Elevation of the total head in fi. This is computed by Eq. (10-49), that
13, by adding the values of ks and k. in cols. 13 and 14 to the elevation at the lower end
of the reach, which is found in col. 15 of the previous reach. If the value so obtained
does not agree closely with that entered in col. 7, a new trial value of the water-surface.
elevation is assumed, and so on, until agreement is obtained. The value that leads
to agreement is the correct water-surface elevation. The computation may then
proceed to the next step. The computed flow profile is practically identical with that
obtained by the graphical-integration method shown in Fig. 10-3. :

10-5. Computation of a Family of Flow Profiles. In previous articles
methods were described for determining a single flow profile. Fre-
quently, several flow profiles, or a family of flow profiles, are desired for
various conditions of stage and discharge. An example of this type of
problem is the determination of the economical height of a dam, where
the initial elevation is indeterminate and, hence, a number of flow profiles

£ may have to be computed for the same discharge with different assumed
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" HAND OUT 17: Hydrologic routing (Chapter 6 of our syllabus). Source:
Mays, L. (2006). “Water resources engineering.” John Wiley and Sons.




Chapter 9 ‘

9.1 ROUTING

Reservoir and Stream Flow
Routing

Figure 9.1.1 illustrates how stream flow increases as the variable source area extends into the
drainage basin. The variable source area is the area of the watershed that is actually contributing
flow to the stream at any point. The variable source area expands during rainfall and contracts
thereafter.

Flow routing is the procedure to determine the time and magnitude of flow (i.e., the flow hydro-
graph) at a point on a watercourse from known or assumed hydrographs at one or more points
upstream. If the flow is a flood, the procedure is specifically known as flood routing. Routing by
lumped system metheds is called hydrologic (lumped) routing, and routing by distributed systems
methods is called hydraulic (distributed)} routing.

For hydrologic routing, input I(z), output Q(#), and storage S(r) as functions of time are related
by the continuity equation (3.2.10)

* d‘S' N
— =0-00 RS

Even if an inflow hydrograph /(#) is known, eguation (9.1.1) cannot be solved direcily to obtain
the outflow hydrograph (), because both 0 and § are unkiown. A second relationship, or stor-
age function, is required to relate §, [, and (; coupling the storage function with the continuity
equations provides a solvable combination of two equations and two unknowns.

The specific form of the storage function depends on the natare of the system being analyzed.
Int reservoir routing by the level pool method (Section 9.2), storage is a nonlinear fonction of @,
§ = f{Q) and the function {Q) is determined by relating reservoir storage and outflow to reservoir
water level. In the Muskingum method (Section 9.3) for flow routing in channels, storage is lin-
early related to [ and 0.

" The effect of storage is fo redistribute the hydrograph by shifting the centroid of the inflow
hydrograph to the position of that of the outflow hydrograph in a time of redistribution. In very
long channels, the entire flood wave also travels a considerable distance and the centroid of its
hydrograph may then be shifted by a time period longer than the time of redistribution. This addi-
tional time may be considered the time of translation. The total time of flood movement between
the centroids of the inflow and outflow hydrographs is equal to the sum of the time of redistribu-
tion and the timie of translation. The process of redistribution modifies the shape of the hydrograph,
while translation changes its position.

-~
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& Varable source area

‘Figure 9.1.1 The small arrows in the hydrographs show how streamflow increases as the variable source extends into swamps,
f"”'\% shallow soils, and ephemeral channels. The process reverses as streamflow declines (from Hewlett (1982)).

O | f
9.2 HYDROLOGIC RESERVOIR ROUTING

Level pool routing is a procedure for calculating the outflow hydrograph from a reservoir assum-
ing a horizontal water surface, given its inflow hydrograph and storage-outflow characteristics.
Equation (9.1.1) can be expressed in the in finite-difference form to express the change in storage
over a time interval (see Figure 9.2.1) as

I.+1. . +0;
PR ki PR It A,

At

Sie =85 = (9.2.1)
The wnflow values at the beginning and end of the jth time interval ace Land [, respectively,
and the corresponding values of the outflow are 0;and Q. , . The values of Land I | are pre-
specified. The values of ¢ and §; are known at the jth time interval from calculations for the pre-
vious time interval. Hence, equation (9.2.1) contains two unknowss, g, , | and S, . |, which are
isolated by multiplying {9.1.1) through by 2/As, and rearranging the result to produce:

AT 25;
Ar + Qi =+ L)+ ?—Q,- (9.2.2)

In order to calculate the outflow g; 1 - a storage-outflow function relating 28/At + Q and (O is
needed. The method for developing this function using elevation-storage and elevation-outflow
relationships is shown in Figure 9.2.2. The relationship between water surface elevation and reser-
voir storage can be derived by planimetering topographic maps or from field surveys. The
elevation-discharge relation is derived from hydraulic equations relating head and discharge for
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Discharge
Loy [nflow
o (‘S:| +1 7 5:1)
b ' , Outflow

|

|

Qj+ 1 5. Ii

Q; ; :

— At i

CjAr (j+ 1)Ar ! Time

i

Storage }
‘S:fi- 1

Time

Figure 9.2.1 Changc of storage during a routing period Ar.

various typ-es of spillways and outlet works. (See Chapter 17.) The value of At is taken as the time
interval of the inflow hydrograph. For a given value of water surface elevation, the values of stor-
age § and discharge ( are determined (parts () and (b) of Figure 9.2.2), and then the value of
28/At + Q is calculated and plotted on the horizontal axis of a graph with the value of the outflow
Q on the vertical axis (part (¢) of Figare 9.2.2). :

In routing the flow through time interval j, all terms on the right side of equation (9.2.2) are
kanown, and so the value of 25; 4 /At + Q; , | can be computed. The corresponding value of Qs
can be determined from the storage-cutflow function 25/Az + Q versus (J, either graphically or by
linear interpolation, of tabular values. To set up the data required for the next time interval, the
value of (25; , \/At —~ @, |) is calculated using :

25, 2844
[ Ar;l - Qj+1:l = {_ﬁ"‘ + Qj+1J - 2Qj+1 (9.2.3)

The computation is then repeated for subsequent routing periods..

Consider a 2-acre stormwater detention basin with vertical walls. The triangular inflow hydrograph
increases linearly from zero to a peak of 60 cfs at 60 min and then decreases linearly (o a zero discharge
at 180 min. Route the inflow hydrograph through the detention basin usin% the Iie'éd—discharge rela-
tionship for the 5-ft dtameter pipe spiliway in colurens (1) and (2} of Table 9.2.1. The pipe is located at
the bottom of the basin. Assuming the basin is initially ermpty, use the level pool routing procedure with
a 10-min time interval to determine the maximum depth in the detention basin.
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Outflow Qutflow

\-ﬂ.mﬁ

g -0
4 |
1 !
! I
! 1
o : H :
Water surface I Storage-
elevation | outflow
&) |l function
Storage 4
S _________________________
b
1
|
I
]
g
Water surface
elovation ,
(a) - ’ L]
Figure 9.2.2 Development of the storage-outflow function for level pool routing on the basis
Y of storage-elevation-outflow curves (from Chow et al. (1988)).
ki .
Table 9.2.1 Elevaﬁon—Dischargc-Storage Data for Example 9.2.1
S :
( ) ] 2 3 4
- 25
. Head H Discharge ¢ Storage § A + 0
(ft) (cfs) (1 (cfs)
0.0 0 0 200
- 0.5 3 43,500 14820
- 10 8 87,120 298.40
15 17 130,680 452.60
2.0 30 174,240 610.80
2.5 43 217,800 769.00
3.0 60 261,360 931.20
35 78 304,920 1094.40
4.0 97 348,480 1258.60
45 117 392,040 1423.80
5.0 137 433,600 1589.00
SOLUTION The inflow hydrograph and the head-discharge (columns 1 and 3) and discharge-storage (columns 2 and . -

3) relationships are used to determine the routing relationship in Table 9.2.1. A routing interval of 10
min is used (o determine the routing relationship 28/Ar + @ vs. @, which is columns 2 and 4 in Table
9.2.1. The routing computations are presented in Table 9.2.2, with the sequence of computations indi-
cated by the arrows. These computations are carried eut using equation {9.2.3). For the first time inter-
val, 5§, = 0, = 0 because the reservoir is empty at £ = 0; then (25,/A¢r — ) = 0. The value of the.
storage-outflow function at the end of the time interval is
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28 25 !
[waﬁJer:!:(Il+Iz)+[A—;—Q1}=(O+10)+0=lO

The value of (, is determined using linear interpolation, so that

(3-0)

— e (10~ 0) = 0.2 fs
(1482-0)

0, =0+
With 2, = 0.2, then 25,/A¢ - (J, for the pext iteration is

2% o 1=l 0 1 20, =10-202)=
[ > Qz]—l: » +Q2} 20, =10-2(02) =96 cfs

287

The computation now procEeds to the next time interval. Refer to Table 9.2.1 for the remaining

computations.

Table 9.2.2 Routing of Flow Through Detention Reservoir by the Level Pool Method (example 9.2.1)

mﬂOW 23 . 25 t

Time ¢ ¥ L+1L,, K:—_Qf T-'-Qf“ Outflow
{min) (cfs) {cfs) (cfs) (cfs) (cfs)
00 00 .00
10.00 10.00 10.00 00 10.00 20
20.00 - 20.00 30.00 9.60 39.60 80
30.00 30.00 50.00 37.99 87.99 1.78
40.00 40.00 70.00 84.43 154.43 321
50.00 50.00 90.00 148.01 238.01 5.99
60.00 60.00 110.00 226.04 336.04 10.20
70.00 55.006 115.00 31564 430.64 1572
80.00 50.00 1065.00 39921 504.21 2124
90.00 45.00 95.00 461.72 556.72 25.56
100.60 40.00 85.00 505.61 590.61 28.34
114.00 35.00 75.00 533.93 608.93 29.85
120.00 30.00 65.00 549.24 614.24 30.28
.130.00 25.00 55.00 553.67 608.67 29.83
140.00 20.00 45.00 549.02 594.02 28.62
150.00 15.00 35.00 536.78 571.78 26.79

160.00 10.00 25.00 . 518.19 543.19 24.44°
170.00 5.00 15.00 494.30 509.30 21.66
180.00 00 5.00 465.98 47098 1851
190.00 00 .00 433.96 43306 15.91
200.00 .00 00 402.14 402,14 14.05
210.00 00 .00 374.03 374.03 12.41
220.00 .00 00 349.20 349.20 1097
230.00 0o 00 327.27 327.27 9.69
240.00 .00 .00 307.90 307.90 8.55
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9.3 HYDROLOGIC RIVER ROUTING

The Muskingum method is a commonly used hydrologic routing method that is based upon a vari-
able discharge-storage relationship. This method models the storage volume of flooding in a Tiver
channel by a combination of wedge and prism storage (Figure 9.3.1). During the advance of a
flood wave, inflow exceeds outflow, producing a wedge of storage. During the recession, outflow
exceeds inflow, resulting in a negative wedge. In addition, there is a prism of storage that is formed
by a volume of constant cross-section along the length of prismatic channel.

Assuming that the cross-sectional area of the flood flow is directly proportional to the discharge
at the section, the volume of prism storage is equal to KQ, where K is a proportionality cocfficient
(approximate as the travel time through the reach), and the volume of wedge storage is equal to
KX(I — ), where X is a weighting factor having the range 0 £ X < 0.5. The total storage is defined
as the sum of two components,

S = KEQ+KX{ — O) (9.3.1)
which can be rearranged to give the storage function for the Muskingum method ‘
§ = K{XI+(1 — XyQ)] (93.2)

Ty and represents a linear model for routing flow in streams.
(\/; The value of X depends on the shape of the modeled wedge storage. The value of X ranges from
0 for reservoir-type storage to 0.5 fora full wedge. When X = 0, there is no wedge and hence 5o
backwater; this is the case for a level-pool reservoir. In natural streams, X is between ( and 0.3,
with a mean value near 0.2. Great accuracy in determining X may not be necessary-becausé the
results of the method are relatively insensitive to the value of this parameter. The parameter K is
the time of travet of the flood wave through the channel reach. For hydrologic routing, the values
of K and X are assumed to be specified and constant throughout the range of flow.
The values of storage at time j and j + 1 can be written, respectively, as

Sj = K[XIJ. +(1 - X)Qj] . (9.33)
Siey = KIXLyy + (1 = X00;04] (9.3.4)

Using equations (9.3.3) and (9.3.4), the change in storage over time interval Aris
Sj+1 - S_; = K{[XI]-H + (1 - X)QJ-H] - {XI]- + (- X)QJ}} 9.3.5)

&

Wedge storage
= KX~ Q)

Prism
storage = KQ

0

Figure 9.3.1 Prism and wedge storages in a channel reach.
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The change in storage can also be expressed using equation (9.2.1). Combining equations (9.3.5)

( "} and (9.2.1) and simplifying gives
- Oy = Clyyy + Gyl + G40 (9.3.6)
which is the routing equation for the Muskingum method, where

Ar—2KX | ¥
e r—— 9.3.7 i
'T2K(1-X) + A @37

) = M._ {9.3.8)

2K(1-X) + At
_ M 93.9)

3T aR(I-X) + At

Notethat C, + C, + C; = 1. 7

The routing procedure can be repeated for several sub-reaches (Nyeps) 50 that the total travel
time through the reach 1s K. To insure that the method is computationally stable and accurate, the
U.S. Army Corps of Engineers (1990) uses the following criterion to determine the number of
routing reaches:

1 K < 1

< < —_
2A1-X)  Nygehr  2X

(9.3.10)

If ohserved inflow and outflow hydrographs are available for a river reach, the values of K and
X can be determined. Assuming various values of X and using known values of the inflow and out-
flow, successive values of the numerator and denominator of the following expression for K,
derived from equations (9.3.3) and (9.3.8), can be computed using

OSA(L + 1)~ (@ +0))]
XU - 1)+ (- X0Qy1 ~2))

The computed values of the numerator (storage) and denominator (weighted discharges) are plot-
ted for each time interval, with the numerator on the vertical axis and the denominator on the hor-
izontal axis. This usually produces a graph in the form of a loop, as shown in Figure 9.3.2. The
value of X that produces a loop closest to a single line is taken to be the commect valae for the reach,
and K, according to equation (9.3.11), is equal to the slope of the line. Since K is the time required
for the incremental flood wave to traverse the reach, its value may also be estimated as the
observed time of travel of peak flow through the reach.

{9.3.11)

Nae?

The objective of this example is to determine X and X for the Muskinguimn routing method using the
February 26 to March 4, 1929 data on the Tuscasawas River from Dover to Newcomerstown. This
example is taken from the U.S. Army Corps of Engineers. (1960) as used in Cudworth (1989). Columns
2 and 3 in Table 9.3.1 are the inflow and outflow hydrographs for the reach. The numerator and denom-
inator of equation (9.3.11) were computed {for each time period) using four values of X = 0, 0.1, 0.2,
and 0.3. The accumulated numerators are in column 9 and the accumulated denominators {weighted dis-
charges) are in columns 11, 13, 15, and 17. In Figure 9.3.2, the accumulated numerator (storages) from
column (9) are plotted against the corresponding accumulated denominator (weighted discharges) for
each of the four X values. According to Figure 9.3.2, the best fit (linear relationship) appears to be for
X = 0.2, which has a resulting X = 1.0. To perform a routing, K should equal A, so that if Ar = 0.5
day, as in this cdse, the reach should be subdivided into two equal reaches (Nmps = 2} and the value of
K should be 0.5 day for each reach.
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Figure 9.3.2 Typical valley storage curves.

Route the inflow hydrograph below using the Muskingum method; Ar = 1 hr, X = (.2, K = 0.7 ts.

Time (hrs) 1] 1 2 3 4 5 6 7
Inflow (cfs) 0 800 2000 4200 5200 4400 3200 2500
Time (hrs) 8 9 10 11 12 13

Inflow (cfs) 2000 1500 1000 00 400 0
1.0-2(0.7)(0.2) '

| = =0.3396
2(0.7(1-02)+1.0

= 1.0 +2(0.7)(0.2) — 0.6038
2(0.7(1-0.2}+ 1.0

_20(1-0.2)-1.0 — 0.0566

T 2A0.7)(1-0.2)+1.0
(Adapted from Masch {1984).)




HAND OUT 18: Hydraulic routing (Chapter 6 of our syllabus). Source:
Mays, L. (2006). “Water resources engineering.” John Wiley and Sons.
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Checktoseeif C; + C, + C; =1t
0.3396 + 0.6038 + 0.0566 = 1
Using equation (9.3.6) with /; = 0 cfs, I, = 800 cfs, and ) = 0 cfs, compute 0, at ¢ = 1 hr:
Q, = C L, + Gl + €0,
= (0.3396)(800) + 0.6038(0) + 0.0566(0)
= 272 cfs (7.7 m%/s)
Next compute O at £ = 2 hr:
0, = CL + CI,+C0,
= (0.3396)(2000) + 0.6038(800) + 0.0566(272)
= 1178 cfs (33 m?/s)

The remaining computations result in

Time (hes) 0 1 2 3 4 5 ] 7
Q (cfs) 0 272 1178 2701 4455 4886 4020 3009
Time (hrs) 8 9 10 11 12 13 14 15
0 (cfs) 2359 1851 1350 918 610 276 16 1

94 HYDRAULIC (DISTRIBUTED) ROUTING

Distributed routing or hydraulic routing, also referred 1o as unsteady flow routing, is based up
the one-dimensional unsteady flow equations referred to as the Sains—Venant eguations. T
hydrologic river routing and the hydrologic reservoir routing procedures presented previously ¢
lumped procedures and compute flow rate as a function of time alone at a downstream locatic
Hydraulic (distributed) flow routings allow computation of the flow rate and water surface eler
tion (or depth) as function of both space (location) and time. The Saint-Venant equations are p:
sented in Table 9.4.1 in both the velocity-depth (nonconservation) form and the discharge-ai
{conservation) form.

The momentum equation contains terms for the physical processes that govern the flow morm
turn. These terms are: the local acceleration term, which describes the change in momentum d
to the change in velocity over time, the convective acceleration term, which describes the chan
in momentum due to change in velocity along the channel, the pressure force term, proportios
to the change in the water depth along the channel, the gravity force term, proportional to the ¢
slope S, and the friction force term, proportional to the friction slope S;. The local and convecti
acceleration terms represent the effect of inertial forces on the fiow.

Alternative distributed flow routing models are produced by using the full continuity equati
while eliminating some terms of the momentum equation (refer to Table 9.4.1). The simplest d
tributed model is the kinematic wave model, which neglects the local acceleration, convect
acceleration, and pressure terms in the momentum equation; that is, it assumes that §; = Sfand 1
friction and gravity forces balance each other. The diffusion wave model neglects the local a
convective acceleration terms but incorporates the pressure term. The dyramic wave model c
siders all the acceleration and pressure terms in the momentum equation.

The momentum equation can also be written in forms that take into account whether the fk
is steady or unsteady, and uniform or nonuniform, as illustrated in Table 9.4.1. In the continu
equation, 34/31 = 0 for a steady flow, and the lateral inflow g is zero for a uniform flow.
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Table 9.4.1  Summary of the Saint—Venant Equations*

Continuity equation

30 oA
—_— —:O
o | or

Conservation form

dy dV a
Nonconservation form hed +—+ & G

dxr dx o

Momentum equation

Conservation form

1 00 19(0Q° dy '
3 " ) o - s, - 5 =0
A ot Adx\ A dx

Local Convective Pressure Gravity  Friction
acceleration  acceleration force force force
ferm term ferm term term

Nenconservation form (unit with clement)

v oV ' dy
- + V— + — - S, - S =0
o ox Fe (S )
| Kinematic wave
L Diffusion wave
[ Dynamic wave

*Neglecting lateral inflow, wind shear, and eddy losses, and assuming § = 1.

{' "y x = longitudinal distance along the channel or river, { = time, A = cross-sectional area of flow, A = water surface ele-
9 } vation, sz friction slope, S, = channel bottom slope, g = acceleration due to gravity, V = velocity of flow, and y=
p depth of flow.

94.1 Unsteady Flow Equations: Continuity Equation

The c;mrinuity equation for an unsteady variable-density flow through a control volume can be
written as in equation (3.2.1):

o=ijpdv+jpv-dA (9.4.1)
drt
Cv S

Consider an elemental control volume of length dx in a channel. Figure 9.4.1 shows three views
of the contro! volume: (@) an elevation view from the side, () a plan view from above, and {c)a
chanel cross-section. The inflow to the control volume is the sum of the flow Q enicring the con-
trol volume at the upstream end of the channel and the lateral inflow q entering the control vol-
ume as a distributed flow along the side of the channel. The dimensions of ¢ are those of flow per
unit length of channel, so the rate of lateral inflow is gdx and the mass inflow rate is

j pV - dA =—p(Q + gdx) (94.2)
inlet
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V_2 “““““ T _Energy grade line

2z ——

Datum

(¢) Cross-section.

Figure 9.4.1 An élemental reach of channel for derivation of Saint-Venant
equations.

This is negative because inflows are considered negative in the control volume approach
{Reynolds transport theorem). The mass outflow from the control volume is

j pV dA = p(Q + a_deJ (9.4.3)
ax

outlet

where 3(J/dx is the rate of change of channel flow with distance. The volume of the channel ele-
ment is Adx, where A is the average cross-sectional area, so the rate of change of mass stered
within the control volume is

4 fpav = IpAdy) 9.44)

v ot
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where the partial derivative is used because the control volume is defined to be fixed in size
(though the water level may vary within it). The net outflow of mass from the control volume is
found by substituting equations (9.4.2)—-(9.4.4) into (9.4.1):

oA _ 1 iy p(Q N dix) -0 (9.4.5)
ar dx

Assuming the fluid density p is constant, equation (9.4.5) is simplified by dividing through by pdx
and rearranging to produce the conservation form of the continuity equation,

9 2 A _ =0 (9.4.6)
ox

which is applicable at a channel cross-section. This equation is valid for a prismatic or a nonpris-
matic channel; a prismatic chanael is one in which the cross-sectional shape does not vary along
the channef and the bed slope is constant.

For some methods of solving the Saint—Venant equations, the nonconservation form of the con-
tinuity equation is used, in which the average flow velocity V'is a dependent variable, instead of
Q. This form of the continuity equation can be derived for a unit width of flow within the chan-
nel, neglecting lateral inflow, as follows. For a unit width of flow,A =y X 1 =yand 0 = VA =
Vy. Snbstituting into equation (9.4.6} yields

a(Vy)  dy
A oo 9.4.7
dx * at ¢ )
or
ay aV dy '
ax ax * ot ‘ ©4.8)

9.4.2 Momentum Equation

Newton’s second law is written in the form of Reynolds transport theorem as in equation (3.4.5):

) ZF;% [Vodv+Y vov-da (9.4.9)
v cs

This states that the sum of the forces applied is equal to the rate of change of momenium stored
within the control volume plus the net outflow of momentuin across the control surface. This equa-
tion, in the form F = 0, was applied {o steady uniform flow in an open channel in Chapter 5.
Here, unsteady nonuniform flow 1s considered.

Forces. There are five forces acting on the control volume:

Y F=F, +F; +F,+F, (9.4.10) |

where F, is the gravity force along the channel due to the weight of the water in the control volume,
Fpis thc friction force along the bottom and sides of the control volume, F), is the contraction/
axpansmn force produced by abrupt changes in the channel cross-section, and F s the unbalanced
pressure force (see Figure 9.4.1). Each of these four forces is evaluated in the following para-
graphs.

Gravity. The volume of fluid in the conirol volume is Adx and its weight is pgAdyx. For a small
angle of chanuel inclination 8, §, = sin 0 and the gravity force is given by

F, = pgAdxsin 8 = pgASydx 94.11)

where the channel bottom slope S, equals --3z/ax.
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Friction. Frictional forces created by the shear stress along the bottom and sides of the control
volume are given by —7,Pdx, where 7, = YRS, = pg(A/P)S, is the bed shear stress and P is the

“wetted perimeter. Hence the friction force is writien as

F,= —pgAS,dx (9.4.12)

where the friction slope S, is derived from resistance equations such as Manning’s equation.

Contraction/expansion. Abrapt contractions or expansions of the channel cause energy losses
through eddy motion. Such losses are similar to minor losses in a pipe system. The magnitade of
eddy losses is related to the change in velocity head V%/2g = (Q/A)*/2g through the length of chan-
nel causing the losses. The drag forces creating these eddy losses are given by

= —pgAS, dx 9.4.13)
where §, is the eddy loss slope
2
K HQ/AY 9.4.14)
2g  ox

in which K, is the nondimensional expansion or contraction coefficient, negative for channel
expansion {(where 3(Q/A)*/dx is negative) and positive for channel contractions.

Pressure. Referring to Figure 9.4.1, the unbalanced pressure force is the resultant of the hydro-
static force on the each side of the control volume. Chow et ak. (1988) provide a detailed deriva-
tion of the pressure force F, as simply

F, =pgA a}’: dx (9.4.15)

d
The sum of the forces in equation (9.4.10) can be expréssed, after substituiing equations
(9.4.11), (9.4.12), (9.4.13), and (9.4.15), a3

3
SF = pASydx — pgAS sdx — pgAS,dx — pgA a—ydx (9.4.16)
X

Momentum. The two momentum terms on the right-hand side of equation (9.4.9) represent the
rate of change of storage of momentum in the control volume, and the net cutflow of momentum
across the control surface, respectively.

Net momentum outflow. The mass inflow rate to the control volume (equation (9.4.2)) is
—p(Q + gdx), representing both stream inflow and lateral inflow. The corresponding momentum
is computed by multiplying the two mass inflow rates by their respective velocity and a momen-
tum correction factor B:

[vovda= —p(BVQ +Bv, qdx) (9.4.17)

inlet

where —pBVQ is the momentum entering from the upstream end of the channel, and —pBv gdx is
the momentum entering the main channel with the lateral inflow, which has a velocity v, in the x
direction. The term B is known as the momentum coefficient or Boussinesq coefficient; it accounts
for the nonuniform distribution of velocity at a channel cross-section in computing the momen-
tunt. The value of § is given by

B= (9.4.18)

V2A
where v is the velocity through a small element of area dA in the channel cross-section. The value

of B ranges from 1.01 for straight prismatic channels to 1.33 for river valleys with floodplains
(Chow, 1959; Henderson, 1966).
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The momentum leaving the control volume is

Ava) . } (9.4.19)

j VpV dA = [BVQ+

outlet

The net outflow of momentum across. the control surface is the sum of equations (9.4.17) and
(9.4.19): ‘

f VpVdA = —p(BVQ +Brgdx) + p[BVQ 4+ JBVD) a(BVQ) ]

= ﬁp[ Ved — -————a(g‘:Q)]dx ' (9.4.20)

Momentum storage. The time rate of change of momentum stored in the control volume is found
by using the fact that the volume of the elemiental channel is Adx, so its momentum is pAdxV, or
pQdx, and then

= jv = p-— (9.4.21)

After substituting the force terms from equation (9.4.16) and the momentum terms from equations
(9.4.20) and (9.4.21) into the momentuta equation (9.4.9), it reads

pgASydx — pgAS pd - pgAS,ds - pgAg-J—’dx - gp[ v.q a(BVQ)]dx +p aQ de (9.422)
X x

Dividing through by pdx, replacing V with Q/A, and rearranging produces the conservation form
of the momentum equation:

30 , 30’ /A ( )
+gAl =5y + 8¢+ =0 9.4.23
T a 3 S0ty Bqv ( )
The depth y in equation (9.4.23) can be replaced by the water surface elevation A, using
h=y+z (9.4.24)

where z is the elevation of the channel bottom above a datuti such as mean sea level. The deriva-
tive of equation (9.4.24) with respect to the longitudinat distance x along the channel is

dh _dy dz
Faw B . (9.4.25)
but dzfdx = —8;, s0
oh _dy
4.2
o ax 5o (04.26)

The momentum equation can now be expressed in terms of h by using equation (9.4.26) in
(9.4.23)

ag e 0°/4) & :
= + — + g4 3 +Sf+.S'] Bagv, ﬁ_o (9.4.27)

The Saint-Venant equations, {(9.4.6) for continuity and (9.4.27) for momentum, are the govern-
ing equations for one-dimensional, unsteady flow in an open channel. The use of the terms S;and

- 8, in equation (9.4.27), which represent the rate of energy loss as the flow passes through the chan-

ne] illustrates the close relationship between energy and momentum considerations in describing
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the flow. Strelkoff (1969) showed that the momentum equation for the Saint—Venant equations can
also be derived from energy principles, rather than by using Newton’s second law as presented
here.

The nonconservation form of the momentum equation can be derived in a similar manner to the
nonconseivation form of the continuity equation. Neglecting eddy losses, wind shear effect, and
lateral inflow, the nonconservation form of theé momentum equation for a unit width in the flow is

av eV

CAAn L 2 _
v +g(ax so+sf]_0 (9.4.28)

9.5 KINEMATIC WAVE MODEL FOR CHANNELS

In Section 8.9, a kinematic wave overland flow runoff model was presented. This is an implicit
nonlinear kinematic model that is used in the KINEROS model. This section presents a general
discussion of the kinematic wave followed by brief description of the very simplest linear models,
such as those found in the U.S. Army Corps of Engineers HEC-1, and the more complicated mod-
els such,as the KINEROS model (Woolhiser et al., 1990).

Kinematic waves govern flow when inertial and-pressure forces are not important. Dynamic
waves govern flow when these forces are important, as in the movement of a large flood wave in
a wide river. In a kinematic wave, the gravity and friction forces are balanced, so the flow does
not accelerate appreciably. :

For a kinematic wave, the energy grade line is paraliel to the channel bottom and the flow is
steady and uniform (S, = S, } within the differential length, while for a dynamic wave the energy
grade line and water surface elevation are not paralle} to the bed, even within a differential
element.

9.5.1 Kinematic Wave Equations

A wave is a variation in a flow, such as a change in flow rate or water surface elevation, and the
wave celerity is the velocity with which this variation travels along the channel. The celerity
depends on the type of wave being considered and may be quite different from the water velocity.
For a kinematic wave the acceleration and pressure terms in the momentum equation are negligi-
ble, so the wave motion is described principally by the equation of continuity. The name kinematic
is thus applicable, as kinematics refers to the study of motion exclusive of the influence of mass
and force; in dynamics these quantjtics are included.
The kinematic wave modetl is defined by the following equations.

Continuity:
0 A
. + i qi{x, 1) 9.5.1)
Momentun:
S, = SJ’r 9.52)

where g(x, £) is the net lateral inflow per unit length of channel.
The momentum equation can also be expressed in the form

A=ag 9.53)

Bt o e e
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For example, Manning’s equation written with So=S;and R = A/P is

1.495%/2 :
=270 4503 (9.5.4)

2= PR
which can he solved for 4 as
5
pi3
A=t Q3’ 5 : {9.5.5)
1.49./8,

50 o= [an" 3/ (1.49 Sy )]0-6 and B = 0.6 in this case,

Equation (9.5.1) contains two dependent variables, A and {, but A can be eliminated by differ-
entiating equation (9.5.3):

04 -1 aQJ
= a4 9.5.6)
o’ B0 ( of ©-36)
and substituting for JA/8¢ in equation (9.5.1) to give
Y p-1f 9Q
—+ —|= 9.5.7
5 ke ) =4 9.5.7)
Alternatively, the momentum equation could be expressed as
Q = aA® 9.5.8)
where a and B are defined using Manning’s equation. Using
00  dg oA .
= 9.5.9
gx  dA ox ¢ )
the governing equation is -
dA  dO oA
— === 9.5.10
&t dA ox ¢ )

where d0/dA is determined by differentiating equation (9.5.8):

- 49 _ past (9.5.11)
dA
and substituting in equation (9.5.10):
24 oA
—=aBA¥l—=
5 = & 3 =4 9.5.12)

The kinematic wave equation (9.5.7) has O as the dependént variabie and the kinematic wave
equation (9.5:12) has A as the dependent variable. First consider equation {9.5.7), by taking the
logarithm of (9.5.3):

IndA=lna+BlQ (9.5.13)
and differentiating
ag 1 (dA]
——=—— (9.5.14)
g B\A
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This defines the relationship between relative errors dA/A and dQ/Q. For Manning’s equation
"B < 1, so that the discharge estimation error would be magnified by the ratio 1/B if A were the
dependent variable instead of Q.
Next consider equation (9.5.12); by taking the logarithm of (9.5.8):

InQ=Ina+BhA (9.5.15)
44 _174dQ.
A Bl
or
4 _ B(ﬁ] (9.5.16)
0 A

In this case B > 1, so that the discharge estimation error would be decreased by B if A were the
dependent variable instead of . In summary, if we use equation (9.5.3) as the form of the momen-
tum cquation, then {2 is the dependent variable with equation (9.5.7) being the governing equation;
if we use equation {9.5.8} as the form of the momentum equation, then A is the dependent variable
with equation (2.5.12) being the governing equation.

9.5.2 U.S. Army Corps of Engineers HEC-1 Kinematic Wave Model for Overland
Flow and Channel Routing

)

.

o

The HEC-1 computer program actuaily has two forms of the kinematic wave. The first is based upon
equation (9.5.12) where an explicit finite difference form is used (refer to Figures 9.5.1 and 8.9.2):

Jtb 4
oA _ A Ay

=~ N (9.5.17)
aA Al - A/
v ©518)
and
Al + 4!
A=% (9.5.19)
_ g+ gl
£ g= i+l 5 i+l (9520)
} Ax { a0
. i+ 1 dx )
. Al _ o7 e L
T i+l je1
2 70
T 3t at
J— . J—
Al AL, 0/
A
i dx i+1 i i+1

(a) {6

Figure 9.5.1 Finite difference forms. {a} HEC-1 “standard form;” (b)) HEC-1 “conservation form.”
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Substituting these finite-difference approximations iato equation (9.3.12) gives

. . : .
L+ i 'j+l + Air ij+l -4/ q;f-:l + q[+1
At(AH'I “’Ai-z-l) +a > Ax > (9.5.21)
‘The only unknown in equation (9.5.21) is 4/, so
-1
1 AI + A 1 At
Al = Al aB(Ax St J (401 -4)+(al + )5 ; (9.5.22)

After computing A-’ ' at each grid afong a time line going from upstream to downstream (see
Figure §.9.2), compute the flow using equation (9.5.8):

o/ = a(f +1) (9.5.23)

v
The HEC-1 model uses the above kinematic wave model as long as a stability factor R < 1
{Alley and Smith, 1987), defined by

R= q%x[(qm +4f )B -{4/ )B} forg>0 (9.5.243)
R= aB(A-’) % forg=0 (9.5.24b)

Otherwise HEC-1 uses the form of equation (9.5.1), where (sce Figure 9.5.1)

J+tl A+l
%% _ o AxQz (9.5.25)
JHL 4 J
%_‘Z‘=_Ai - 4 (9.5.26)
S0
Q;rﬂ OitL At _ 4
=LA TR, 9.527)
Solving for the only unknown @7 yields
QI = 07" 4 gAx - t(Aij“ —4)) (9.5.28)

Then solve for A7}, +1 using equation (9.5.23):
1B
At =(La) ©.5.29)

‘The initial condition (values of A and Q at time 8 along the grid, referring to Figure 8.9.2) are com-
puted assuming uniform flow or nonuniform flow for an initial discharge. The upstream boundary
is the inflow hydrograph from which ( is obtained.

The kinematic wave schemes used in the HEC-1 model are very simplified. Chow et al. (1983)
presented both linear and nonlinear kinematic wave schemes based upon the equation (9.5.7) for-
mulation. An example of a more desirable kinematic wave formulation is that by Woolhiser et al.
(1990) presented in the next subsection.
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9.5.3 KINEROS Channel Flow Routing Model

The KINEROS channel routing model uses the equation (9.5.10) form of the kinematic wave
equation {(Woolhiser et al., 1990):

d4  dQodA

—t——=g(x ¢ 9.5.10

ot dA ox o ) ¢ )
where g(x, 1) is the net Iateral inflow per unit length of channel. The derivatives are approximated
using an implicit scheme in which the spatial and temporat derivatives are, respectively,

Jtl _ 4+l
g_A Y Ay AxA: +{1—g) L " Awl {9.5.30)
X
j+1 Jj+1 J+l J+1 f
‘ﬁ gA (_i_?) (AHI -4 ]+(I a)(dQ) [_”in_é‘_.J (9.5.31)
x
and
on_1[ai-al al-al,]
5 f E[ v Y {9.5.32)
or

1 1
A AN v Al Al -4,

i+l 4

r 24t

(9.5.33)

Substituting equations (9.3.31) and (9.5.33) into (9.5.10), we have
Af’++li !+1 +A:J+ _Ar'] +48 (@)}H Az;++11 - A:‘Hl +(1 G} (dg]ﬂl A:+1 _AJ
2At dA Ax Ax

1 i 1 . .
= alil v v gl +d]) (9.5.34)

The only unknown in this equation is AJ '\ » which must be solved for numerically by use of an iter-
ative scheme such as the Newton—Rhapson method (see Appendix A).
Woolhiser et al. (1990) use the following relationship between channel discharge and cross-
sectional area, which embodies the kinematic wave assumption:
£

0=aR™A (9.5.35)

where R is the hydraulic radivs and o« = 1.495"%/n and m = 5/3 for Manning’s equation.

9.5.4 Kinematic Wave Celerity

Kinematic waves result from changes in (. An increment in flow 40 can be written as

dQ = aQ Srd +aa—Q (9.5.36)

Dividing through by dx and rearranging produces:

9Q  d190 _do
n dxd dx (337
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Equations (9.5.7) and (9.5.37) are identica} if

dag
—= 9.5.38
A { )
and
ﬁ - (9.5.39)
dt - aBQ371 and e

Differentiating equation (9.5.3) and rearranging gives

40 1
— = 9.5.40
dA  apgP! ©340)
and by comparing equations (9.5.38) and (9.5.40), it can be seen that
dx  dQ
—=— 0.541
dt  dA ¢ )
or
‘ dx  dQ
=—= 9.5.42
“Tw dA ©342)

where ¢, is the kinematic wave celerity. This implies that an observer moving at a velocity
dx/dt = ¢, with the flow would see the flow rate increasing at a rate of dQ/dx = ¢. if g = 0 the
observer would see a constant discharge. Equations {9.5.38) and (9.5.42) are the characteristic
equations for a kinematic wave, two ordinary differential equations that are mathematically equiv-
alent to the governing continuity and momentum equations.

{: T} The kinematic wave celerity can also be expressed in terms of the depth y as
o 1d
ey = L1do (9.5.43)
B dy
where dA = Bdy.

Both kinematic and dynamic wave motion are present in natural flood waves. In many cases the
channel slope dominates in the momentum equation; therefore, most of a flood wave moves as a
kinematic wave. Lighthill and Whitham (1955) proved that the velocity of the main part of a nat-
ural flood wave approximates that of a kinematic wave. If the other momentum terms (3V/ar,
V(3Viax) and (1/g)dy/dx) are not negligible, then a dynamic wave front exists that can propagate
both upstream and downstream from the main body of the flood wave.

9.6 MUSKINGUM-CUNGE MODEL

Cunge (1969) proposed a variation of the kinematic wave method based upon the Muskingum
method (see Chapter 8). With the grid shown in Figure 9.6.1, the unknown discharge o ,:'li can be

expressed using the Muskingum equation (@, = G, + Gl + G0
ol =™ + GOl + GOl ©9.6.1)

+ el Y S P Tk :
where Q' =010 O/ = Ls @/ =1;;and O} = 0;. The Muskingum coefficients are

A —2KX

LKA X A (062)
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QJ:+1=[- + .
: . 1j+ Q{:;=Qj+1
i+
J . ’
Qf-:Ij Q[‘+1=Qj+1’
I i+1
—_— —

i i+1

Figure 9.6.1 Finite-difference grid for

Muskingum—Cunge method.
Ar4+2KX
= —————— .6-
2T 2K(A-X)+ At ©-63)
2K -X)—Ar

3T oR(-X)+ At

Cunge (1969) showed that when K and Ar are considered constant, equation (9.6.10) is an
approximate solution of the kinematic wave. He further demonstrated that (9.6.1) can be consid-
ered an approximation of a modified diffusion equation if

= ——=—
= " (9.6.5)
and
M2
, X= 2(1 BeyS, ] (9.6.6)

wherte ¢, is the celerity corresponding to O and B, and B is the width of the water surface. The
value of Ax/(d(Q/dA) in equation (9.6.5) represents the time propagation of a given discharge along
a channel reach of length Ax. Numerical stability requires 0 < x < 1/2. The solution procedure is
basically the same as the kinematic wave.

9.7 IMPLICIT DYNAMIC WAVE MODEL

The conservation form of the Saint-Venant equations is used because this form provides the ver-
satility required to simulate a wide range of flows from gradval tong-duration flood waves in rivers
to abrupt waves similar to those caused by a dam failure: The equations are developed from equa-
tions (9.4.6) and (9.4.25) as follows. .
: Weighted four-point finite-difference approximations given by equations (9.7.1)-(9.7.3) are
i used for dynamic routing with the Saint—Venant equations. The spatial derivatives 30/ 3x and 3hidx
| are estimated between adjacent time lines:
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90 _ ol -al" -0/
4_‘:6 i+1 11 1_9\ l+l 7.
ax A.x[- +( ! A)ct- (9 ! I)
LN el TN, P 07
x Ax; Ax; 072
and the time derivatives are:
A+ 4g) _ (At A" +(Ar Al —(A+ Ay (At Aol ©73)
ot 24¢; o
a0 ot +alil -0l -0l
P ‘ 74
ot 2At; ©-7.4)

The nonderivative terms, such as g and A, arg estimated between adjacent tirne lines, using:

,-+I g+l

—¢ q; . +qia + (1 ) 9) 24’”_1 e‘?ijﬂ + (1 _ B)Zjiij 9.7.5)
j¥l i+l i i . s
A= e{f‘m—g—] { —e)[A—f%ﬂ'—ﬂ} =047 +(1-0)A] (9.7.6)

where g; and A; indicate the lateral flow and cross-sectional area averaged over the reach Ax,.
The finite-difference form of the continuity equation is produced by substituting equations.
(9.7.1), (9.7.3), and (9.7.5) into (9.4.6):
J+l j+1
[Ql-i-l Qi j+1 J + (1 e)( Q£+l Q} é{J
Ax; Ax;

T 13

(A A +(Ax AL — (A A —(Ar Al _ ©77
i 2At; - o
Slrmlarly, thc momentum equation (%.4.27) is written in finite-difference form as:
o/ + ol -0l -0l
‘ 2At;

9 Aj 2 ‘ + j+ f
| Be/a)” (po Ja),s +gz”‘{M (5) "+ (se)”‘)—(ﬁqvx)”l

Ax, Ax, j

t

(Bo*/a) -(po?/a),

Ax-

3

+(1-8)

i+f +ggg‘(’*fj++‘;’.‘i (Sf) +(5 )J (qu) =0 (9.78)

i

The four-point finite-difference form of the continuity equation can be further modified by mul-
tiplying equation (9.7.7) by Ax; to obtain

0O~ 0F T - I Ax) + (1- 0 Q) -0 - 3] Ax)

Ax; f + : .
s (a0 )" A+ A A Ag)] —(4+ Ay | O

9.79)
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Similarly, the momentum equation can be modified by multiplying by Ax; to obtain

Ax; . ; . :
aa w0l ol o)

2+ 2 i »
(A T P P S o W

J i . . .
O e I e | LR R S R PSR,

i+
{9.7.10)
where the average values (marked with an overbar) over a reach are defined as
p=PitPia , (9.7.11)
2
- A+ A
. A = J*TA!& (9.7.12)
L
i : — B +B:
I , B =Bt B ©.1.13)
; 2
0= 93 Qi : (9.7.14)
2 ;
Also,

Ri=Ai/B; (9.7.15)
for use in Manning’s equation. Manning’s equation may be solved for §; and written in the form
shown below, where the term IQIQ has magnitude 7 and sign positive or negative depending on
whether the flow is downstream or upstream, respectively:

2= =
_ niia0.
(85),= —%; (9.7.16)
4 ¢ 2.208A: R:
The minor headlosses arising from coniraction and expansion of the channel are proportional to
~ the difference between the squares of the downstream and upstream velocities, with a contraction/
expansion loss coefficient K
- K.} 2 2
A 2 -(9) 0117
T 288x|\AJi \AJ;
* The terms having superscript j in equations (9.7.9) and (9.7.10) are known either from initial
conditions or from a solution of the Saint—Venant equations for a previous time line. The terms g,
) Ax, B, K,, C,, and V_ arc known and must be specified independently of the sclution, The
2T, R . . . . . ;
unknown terms are 07", @/, WIS L AT, 4SS B/ and B/} However, all the terms can be
expressed as functions of the unknowns Qij , Q{:'ll, Bt and kf:l' so there are actually four
unknowns. The unknowns are raised to powers other than unity, so equations (9.7.9) and (9.7.10)
are nonlinear equations.
The continuity and momentum equations are considered at each of the N-1 rectangular grids

shown in Figure 9.7.1, between the upstream boundary at { = 1 and the downstream boundary at
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Figure 9.7.1 The x-¢ solution plane. The finite-difference forms of the Saint—Venant equations are solved
at a discrete number of points {values of the independent variables x and 1) arranged to form the rectangh-
lar grid shown. Lines parallel to the time axis represent locations along the channel, and those paraliel to
the distance axis represent times (from Fread (1974)).

i = N. This yields 2N-2 equations. There aré two unknowns at each of the N grid points (Q and £),
so there are 2N unknowns in all. The two additional equations required to complete the solution
are supplied by the upstream and downstream boundary conditions. The upstream boundary con-
dition is usually specificd as a known inflow hydrograph, while the downstream boundary condi-
tion can be specified as a known stage hydrograph, a known discharge hydrograph, or a known
relationship between stage and discharge, such as a rating curve. The U.S. National Weather
Service FLDWAV model (hsp.nws.noaa.govloh/hri/rvmech) uses the above to describe implicit
dynamic wave model formulation.

-

PROBLEMS

9.1.1 The storage-outflow characteristics for a reservoir are
given below. Determine the storage-outflow function 25/Ar + 0
versus  for each of the tabutated values using Ar = 1.0 hr. Plot
a graph of the storage-outflow function.
Storage (106 m®) 70 80

Outflow (m>) 0 50

100
350

115
T00

85
150

9.2.1 Route the inflow hydrograph given below through the .

reservoir with the storage-outflow characteristics given in prob-
lem 3.6.1 using the level pool method. Assume the reservoir has
an initial storage of 70 X 106 m™.

Time (h) o 1 2 3 4 5 6 7 8
Inflow (m¥s) 0 40 60 150 200° 300 250 200 180
Time (h) 9 10 i1 12 13 14 15 16

Inflow(m¥s) 220 320 400 280 190 150 50 O

9.2.2 Rework problem 9.2.1 assuming the reservoir storage is
initially 80 X 10° m. :

9.2.3 Write a computer program to solve problems 9.2.1 and
9212,

924 Rework example 9.1.1 using a 1.5-acre detention basin.

9.2.5 Rework example 9.1.1 uging a triangular inflow hydro-
graph that increases linearly from zero to a peak of 90 cfs at 120
min and then decreases linearly to a zero discharge at 240 min.
Use a 30-min routing interval.

9.2.6 Rework example 9.2.2 using At = 2 hs.
9.2.7 Rework example $.2.2 assuming X = 0.3 hrs.
9.3.1 Reéwork example 9.2.2 assuming K = 1.4 hr.
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9.3.2 Calculate the Muskingum routing K and number of routing
steps for a 1.25-mi long channel. The average cross-section
dimensions for the channel are a base width of 25 ft and an aver-
age depth of 2.0 ft. Assume the channel is rectangular and has
Manning’s n 0.04 and a slope of 0.009 fu/ft.

9.3.3 Route the following upstream inflow hydrograph through a
downstream flood control channel reach using the Muskingum
method. The channel reach has a k=25 hrand X=0.2. Use a
routing interval of 1 hr.

Time (h) 1 2 3 4 5 6 7
Inflow (cfs) 90 140 208 320 440 550 640
Time (h) 8 9 10 11 12 13 14
Inflow (cfs) 680 690 630 570 470 390

Time (h) 15 16 17 18 19 20

Inflow (cfs) 330 250 180 130 100 90

9.3.4 Use the U.S. Army Corps of Engineers HEC-1 computer
program to solve Problem 9.3.3.
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HAND OUT 19: Overview of hydraulic routing (Chapter 6 of our syllabus).




-~ Over\[iew E‘Ehydrau\ic routing

Ejenera\ equahons

 Mass. |29Q 4 2LL
| EVC N --—QL] A2=A one

Mormentum:

Q42 CPQ 7+%SL(~%L+S4+S€D~
_(ﬁqrﬂx

z) AEFrox\ma%ons

OD Kinematic wave:
KW 2 fajz__.
Ex +

Sc:»: S.F

% D ﬁbgi\/e wave:
AR, 2
D Ot —-9r

3% - g(S-Sp=0




‘3) SO\U“HOHS ’FOT'%Q K\ )

(b HEC-1 YQ(S‘QIOH 3) |
a—é—z_ —g_lltﬂ h‘gzl-\—*l

O
L
+ I 3
| i
. 1~ ! ‘J« o







HAND OUT 20: Overview of hydrologic and hydraulic routing (Chapter 6 of
our syllabus). Source: U.S. Corps of Engineers.
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Chapter 9
Streamflow and Reservoir Routing

9-1. General

a.  Routing is a process used to predict the temporal
and spatial variations of a flood hydrograph as it moves
through a river reach or reservoir. The effects of storage
and flow resistance within a river reach are reflected by
changes in hydrograph shape and timing as the floodwave

- moves from upstream to downstream. Figure 9-1 shows

the major changes that occur to a discharge hydrograph as
a floodwave moves downstream.

b, In general, routing techniques may be classified
into two categories: hydraulic routing, and hydrologic
routing. Hydraulic routing techniques are based on the
solution of the partial differential equations of unsteady
open channel flow. These equations are often
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referred to as the St Venant equations or the dynamuc
wave equations. Hydrologic routing employs the continu-
ity equation and an analytical or an empirical relationship
between storage within the reach and discharge at the

outlet.

¢. Flood forecasting, reservoir and channel design,
floodplain studies, and watershed simulations generally
utilize some form of routing. Typically, in watershed
simulation studies, hydrologic routing is utilized on a
reach-by-reach basis from upstream fo downstream. For
example, it is often necessary to obfain a dischaige hydro-
graph at a point downsiream from a location where a
hydrograph has been observed or computed. For such
purposes, the upstream hydrograph is routed through the
reach with a hydrologic routing technique that predicts
changes in hydrograph shape and timing. Local flows are
then added at the downstream location to obtain the total
flow hydrograph. This type of approach is adequate as
long as there are no significant backwater effects or.

Inflow Hydrograph
At Pgint A

AN

Water
Entering
Storags

MG IB2ITOW—=0

Travel
Time
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ﬂ Attenuation

Routed Hydrograph
At Point B

~

Water
Laaving
Storage

TIME

Figure 9-1. Discharge hydrograph routing effects
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discontinuities in the water surface because of jumps or g = lateral inflow per unit length of channel

bores. When there are downstream controls that will have

~an effect on the routing process through an upstream §, = friction slope

reach, the channel configuration should be treated as ome

continuous system. This can only be accomplished with a §, = channel bed slope
hydraulic routing technique that can incorporate backwater :

‘effects as well as internal boundary conditions, such as g = gravitational acceleration

those associated with culverts, bridges, and weirs.
Solved together with the proper boundary conditions,

d This chapter describes several different hydraulic Equations 9-1 and 9-2 are the complete dynamic wave
and hydrologic routing techniques. Assumptions, limita- equations. The meaning of the various terms in the
tions, and data requirements are discussed for each. The dynamic wave equations are as follows (Henderson 1966):

basis for selection of a particular routing technique is

reviewed, and general calibration methodologies are pre- (1) Continuity equation.
sented. This chapter is limited to discussions on 1-D flow

routing techniques in the context of flood-runoff analysis. ) .

The focus of this chapter is on discharge (flow) rather AE = prism storage

than stage (water surface elevation). Detailed presentation
of routing techniques and applications focused on stage dy _
calculations can be found in EM 1110-2-1416. VBE; = wedge storage

9-2. Hydraulic Routing Techniques ay te of ri
— = rale gf rise

a. The equations of motion. The cquations that .
describe 1-D unsteady flow in open channels, the Saint q = lateral inflow per unit length
Venant equations, consist of the continuity equation,

¢ ™ Eguation 9-1, and the momentum equation, Equation 9-2.

& 3 ]
.../ The solution of these equations defines the propagation of (2) Momentum equation.
a floodwave with respect to distance along the channel )
and time. ' S, = friction slope (frictional forces)
4 BE . VB _E_)Z ¢ B E)i -q ©-1) S, = bed slope (gravitational effects)
dx ox ot
%}i = pressure differential
: X
s =5 - Y 197 0-2) i~
dx g ox g ot 22 = convective acceleration
g ox
where
iEK = Jocal acceleration
. gt
A4 = cross-sectional flow area
I = average velocity of water (3) Dynamic wave equations. The dynamic wave
equations are considered to be the most accurate and
x = distance along channel comprehensive solution to 1-D unsteady flow problems in
open channels. Nonetheless, these equations are based on
B = water surface width specific assumptions, and therefore have limitations. The
assumptions used in deriving the dynamic wave cquations
y = depth of water are as follows:
¢ = fime




(a) Velocity is constant and the water surface is hori-
zontal across any channel section.

(by All flows are gradually varied with hydrostatic
pressure prevailing at all points in the flow, such that
vertical accelerations can be neglected.

(¢} No lateral secondary circulation oceurs,

(d) Channel boundaries are treated as fixed; therefore,
no erosion or deposition accurs.

(e) Water is of uniform density, and resistance to
flow can be described by empirical formulas, such as
Manning’s and Chezy’s equation.

(f) The dynamic wave equations can be applied to 2
wide range of 1-D flow problems; such as, dam break
floodwave routing, forecasting water surface elevations
and velocities in a river system during a flood, evaluating
flow conditions due to tidal fluctuations, and routing
flows through irmrigation and canal systems. Solution of
the fill cquations is normally accomplished with an
explicit or implicit finite difference technique. The equa-
tions are solved for incremental times {at) and incremen-
tal distances {(ax) along the waterway.

b.  Approximations of the full equations. Depending
on the relative importance of the various terms of the
momentum Equation 9-2, the equation can be simplified

. for various applications.  Approximations to the full

dynamic wave equations are created by combining the
continuity equation with various simplifications of the
momentum equation. The most common approximations
of the momentum equation are:

.= 5 - % _ Vo 19V 9.3
AR T A

Sicady Uniform Flow|
Kinemaiic Wave Approx.

Steady Nonuniform Flow |
Diffusion Wave Approximation

Steady Nonuniform Flow
Quasi-Steady Dynamic Wave Approximation

Linsteady Nonuniform Flow
Full Dynamic Wave Equation
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The use of approximations to the full equations for
unsteady flow can be justified when specific terms in the
momentum equation are small in comparison to the bed
slope. This is best illustrated by an example taken from
Henderson’s  book Open Channel  Flow  (1966).
Henderson computed values for each of the terms on the
right-hand side of the momeuntum equation for a steep
alluvial stream:

Term: s ¥ Yor 1o
¢ dx g dx g of
Magnitude (f/mi): 26 .5 12-.25 05

These figures relate to a very fast rising hydrograph in
which the flow increased from 10,000 to 150,000 cfs and
decreased again to 10,000 ofs within 24 hr. Even in this
case, where changes in depth and velocity with respect to
distance and time are relatively large, the last three terms
are still small in comparison to the bed slope. For this
type of flow situation (steep stream), an approximation of
the full equations would be appropriate. For flatter
slopes, the last three terms become increasingly more
important.

(1) Kinematic wave approximation. Kinemaiic flow
occurs when gravitational and frictional forces achieve a
balance. In reality, a true balance between gravitational
and frictional forces never occurs. However, there are
flow situations in which gravitational and frictional forces
approach an equilibrium. For such conditions, changes in
depth and velocity with respect to time and distance are
small in magnitude when compared to the bed slope of
the channel. Therefore, the terms to the right of the bed
slope in Equation 9-3 are assumed to be negligible. This
assumption teduces the momentum equation fo the
following:

S =S (9-4)

Equation 9-4 essentially states that the momentum of the
flow can be approximaied with a uniform flow assump-
tion as described by Manning's or Chezy’s equation.
Manning’s equation can be written in the following form:

O=ad" 9-5)




"/-:M'm

)
o

.
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where ¢ and m are related to flow geometry and surface

 roughness

Since the momentum equation has been reduced to a
simple functional relationship between area and discharge,
the movement. of a floodwave is described solely by the
continuity equation, written in the following form:

L 90 _
T ox 1

{9-6)

Then by combining Equations 9-5 and 9-6, the governing
kinematic wave equation is obtained as:

a4

P ©-7)

1 ox

dlffuswn _|ust smlple transiatmn o'athe
time. ~ The l(mematlc wave. equatlons are usully solved
by explicit -or implicit finite difference technigques. Any
attenuation of the peak flow that is computed using the
kinematic ‘wave-equations is due to errors inherent in the
finite difference solution scheme.

(a) The application of the kinematic wave equation is
limited to flow conditions that do not demonstrate appre-
ciable hydrograph attenuation. In general, the kinematic
wave approximation works best when applied to steep
(10 f/mile or greater), well defined channels, where the

‘floodwave is gradually varied.

(b} The kinematic wave approach is often applied in
urban areas because the routing reaches are generally
shott and well defined (i.e., circular pipes, concrete lined
channels, etc.).

(¢) The kinematic wave equations cannot handle
backwater effects since, with a kinematic model flow,
disturbances can only propagate in the downsiream direc-
tion. All of the terms in the momentum equation that are
used to describe the propagation of the floodwave
upstream (backwater effects} have been excluded.

(2) Diffusion wave approximation. Another common
approximation of the full dynamic wave equations is the
diffusion wave analogy. The diffusion wave model util-
izes the continuity Equation 9-1 and the following simpli-
fied form of the momentum equation:

9-4

. (9-8)

The diffusion wave model is a significant improvement
over the kinematic wave model because of the inclusion
of the pressure differential term in Equation 9-8. This
term allows the diffision model to describe the attenua-
tion (diffusion effect) of the floodwave. It also altows the
specification of a boundary condition at the downstream
extremity of the routing reach to account for backwater
effects. It does not use the inertial terms (last two terms)
from Equation 9-2 and, therefore, is limited to slow to
moderately rising floodwaves (Fread 1982). However,
most natural floodwaves can be described with the diffu-
sion form of the equations.

(3) Quasi-steady dynamic wave approximation. The
third simplification of the full dynamic wave equations is
the quasi-steady dynamic wave approximation.  This
model utilizes the continuity equation, Equation 9-1, and
the following simplification of the momentum equation:

s -8 -2 Yo
o

2 (9-9)
g ox

In general, this simplification of the dynamic wave cqua-
tions is not used in flood routing. This form of the
momentum equation is more commonly used in steady
flow-water surface profile computations. In the case of
flood routing, the last two terms on the momentum cqua-
tion are ofien opposite in sign and tend to counteract cach
other {Fread 1982). By including the convective accelera-
tion term and not the local acceleration term, an error is
introduced. This error is of greater magnitude than the
error that results when both terms are excluded, as in the
diffusion wave model. For steady flow-water surface
profiles, the last term of the momentum equation (changes
in velocity with respect to time) is assumed to be zero.
However, changes in velocity with respect to distance are
still very important in the calculation of steady flow-water

surface profiles.

. Data requirements. In general, the data require-
ments of the various hydraulic routing techniques are
virtually the same. However, the amount of detail that is
required for each type of data will vary depending upon
the routing technique being used and the situation it is
being applied to. The basic data requirements for hydrau-
lic routing techniques are the following: '




{1) Flow data (hydrographs).

(2} Channel cross sections and reach lengths.

(3) Roughness coefficients.

{4) Initial and boundary conditions.

(a) Flow data consist of discharge hydrographs from
upstream locations as well as lateral inflow and tributary

flow for all points along the stream.

~ (by Channel cross sections are typically surveyed
sections that are perpendicular to the flow lines. Key

" issues in selecting cross sections are the accuracy of the

surveyed data and the spacing of the sections along the
stream. [f the routing procedure is utilized to predict
stages, then the accuracy of the cross-sectional dimensions
will have a direct effect on the prediction of the stage. If
the cross sections are used only to route discharge hydro-
graphs, then it is only important to ensure that the cross
section is an adequate representation of the discharge
versus flow area of the section. Simplified cross-sectional
shapes, such as $-point cross sections or trapezoids and
rectangles, are often used to fit the discharpe versus flow
area of a more detailed section. Cross-sectional spacing
affects the level of detail of the results as well as the
accuracy of the numerical solution to the routing equa-
tions. Detailed discussions on cross-sectional spacing can
be found in the reference by the Hydrologic Engineering
Center (HEC) (USACE 1986).

{c) Roughness coefficients for hydraulic routing
models are typically in the form of Manning’s © values.
Manning’s coefficients have a direct impact on the travel
time and amount of diffusion that will occur when routing
a flood hydrograph through a channel reach. Roughness
coefficients will also have a direct impact on predicted
stages.

(d) All hydraulic models require that initial and boun-
dary conditions be established before the routing can
commence. Initial conditions are simply stated as the
conditions at all points in the stream at the beginning of
the simulation. [nitial conditions are established by speci-
fying a base flow within the channel at the start of the
simulation. Channel depths and wvelocities can be calcu-
lated through steady-state backwater computations or a
normal depth equation ({e.g., Manning's equation).
Boundary conditions are known rclationships between
discharge and time and/or discharge and stage. Hydraulic
routing computations require the specification of

upstream, downstream, and internal boundary conditions
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o solve the equations. The upstream boundary condition
is the discharge {or stage) versus time relationship of the
hydrograph to be routed through the reach. Downstream
boundary conditions are usvally established with a steady-
state rating curve (discharge versus depth relationship) or
through normal depth calculations (Manning’s equation).
Internal boundary conditions consist of lateral inflow or
tributary flow hydrographs, as well as depth versus dis-
charge relationships for hydraulic structures within the
river reach.

9-3. Hydrologic Routing Techniques

Hydrologic routing employs the use of the continuity
equation and either an analytical or an empirical relation-
ship between storage within the reach and discharge at the
outlet. In its simplest form, the continuity equation can
be written as inflow minus outflow equals the rate of
change of storage within the reach:

[-0= AS (9-10)
At

where

[ =the average inflow to the reach during A¢

O = the average outflow from.the reach during At
§ = storage within the reach

a. Modified puls reservoir routing.

(1) One of the simplest routing applications is the
analysis of a floodwave that passes through an
unregulated reservoir (Figure 9-2a). The inflow hydro-
graph is known, and it is desired to compute the outflow
hydrograph from the reservoir. Assuming that all gate
and spillway openings arc fixed, a unique relationship
between storage and outilow can be developed, as shown
in Figure 9-2b.

(2) The equation defining storage routing, based on
the principle of conservation of mass, can be written in
approximate form for a routing interval az. Assuming the
subscripts “1” and “2” denote the beginning and end of
the routing interval, the equation is wriften as follows:

L+L S-S5 ©-11)
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Figure 9-2. Reservoir storage routing

The known values in this equation are the inflow hydro-
graph and the storage and discharge at the beginning of
the routing interval. The unknown values are the storage

rf” ™y and discharge at the end of the routing interval. With two
\ j unknowns (O, and S,} remaining, another relationship is

required to obtain a solution. The storage-outflow rela-
tionship is normally used as the second equation. How
that refationship is derived is what distinguishes various
storage routing methods.

(3) For an uncontrofled reservoir, outflow and water
in storage are both uniquely a function of lake elevation.
The two functions can be combined to develop a storage-
outflow relationship, as shown in Figure 9-3. Elevation-
discharge relationships can be derived directly from
hydraulic equations. Elevation-storage relationships are
derived through the use of topographic maps. Elevation-
area relationships are computed first, then either average
end-area or conic methods are used to compute volumes.

(4) The storage-outflow relationship provides the out-
fiow for any storage level. Starting with a nearly empty
reservoir, the outflow capability would be minimal. If the
inflow is less than the outflow capability, the water would
flow through. During a flood, the inflow increases and
eventually exceeds the outflow capability. The difference
between inflow and outflow produces a change ia storage.
In Figure 9-4, the difference between the inflow and the
outflow (on the rising side of the outflow hydrograph)
represents the volume of water entering storage.

(5) As water enters storage, the outflow capability
increases because the pool fevel increases. Therefore, the
outflow increases. This increasing outflow with increas-
ing water in storage continues until the reservoir reaches a
maximum level. This will occur the moment that the
outflow equals the inflow, as shown in Figure 94. Once
the outflow becomes greater than the inflow, the storage
level will begin dropping. The difference between the
outflow and the inflow hydrograph on the recession side
reflects water withdrawn from storage.

(6) The modified puls method applied te reservoirs
consists of a repetitive solution of the continuity equation.
It is assumed that the reservoir water surface remains
horizontal, and therefore, outflow is a unigue function of
reservoir storage. The continvity equation, Equation 9-11,
can be manipulated to get both of the unknown variables
on the lefi-hand side of the equation:

S G| (S, 00, hth o
At 2 A2 ! 2

Since I is known for all time steps, and O, and §; are
known for the first time step, the tight-hand side of the
equation can be calculated. The left-hand side of the
equation can be sofved by trial and error. This is accom-
plished by assuming a value for either S, or O,, obtaining
the correspending value from the storage-outflow relation-
ship, and then iterating until Equation 9-12 is satisfied.
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Figure 9-4. Reservoir routing example

Rather than resoit to this iterative procedure, a value of (Viessman etal. 1977). The numerical integration of
af is selected and points on the storage-cutflow curve ate Equation 9-12 and Figure 9-5 is illustrated as an example
replotted as the “storage-indication” curve shown in in Table 9-1. The stepwise procedure for applying the
Figure 9-5. This graph allows for a direct determination modified puls method to reservoirs can be summarized as
of the outflow (0,) once a value of storage indication follows:

(S,/at + 0,/2) has been calculated from Equation 9-12
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Figure 9-5. Storage-indication curve

{a) Determine a composite discharge rating curve for
all of the reservoir outlet structures.

{b) Determie the reservoir storage that corresponds
with each elevation on the rating curve for reservoir out-
flow.

(¢} Select a time step and construct a storage-indica-
tion versus ouiflow curve {(8/af) + ((0/2)] versus O.

{d} Route the inflow hydrograph through the reservoir
based on Equation 9-12 and the storage-indication curve.

(e) Compare the results with historical events to
verify the model.

b, Modified puls channel routing. Routing in natural
rivers is complicated by the fact that storage in a river
reach is not a function of outflow alone. During the pass-
ing of a floodwave, the water surface in a channel is not
uniform.  The storage and water surface slope within a
river reach, for a given outflow, is greater during the
rising stages of a floodwave than during the falling
(Figure 9-6). Therefore, the relationship between storage

and discharge at the outlet of a channel is not a unique
relationship, rather it is a looped relationship. An exam-
ple storage-discharge function for a river is shown in

Figure 9-7.

(1} Application of the modified puls method to
rivers. To apply the modified puls method to a channel
routing problem, the storage within the river reach is.
approximated with a series of “cascading reservoirs” (Fig-
ure 9-8). Each reservoir is assumed to have a level pool
and, therefore, a unique storage-discharge relationship.
The cascading reservoir approach is capable of approxi-
mating the looped storage-outflow effect when evaluating
the river reach as a whole. The rising and falling flood-
wave is simulated with different storage levels in the
cascade of reservoirs, thus producing a looped -storage-
outflow function for the total river reach. This is depicted
graphically in Figure 9-9.

the storage-outflow

(2} Determination of
relationship.

{) Determining the storage-outflow relationship for
a river reach is a critical part of the modified puls proce-
dure. In river reaches, storage-outflow relationships can
be determined from one of the following:

= steady-flow profile computations,
- observed water surface profiles,
+ normal-depth calculations,

= observed inflow and outflow hydrographs, and
«  optimization techniques applied to observed
inflow and outflow hydrographs.

(b) Steady-flow water surface profiles, computed
over a range of discharges, can be used to determine
storage-outflow relationships in a river reach
{Figure 9-10). In this illustration, 2 known hydrograph at
A is to be routed to location B. The storage-outflow
relationship required for routing is determined by comput-
ing a series of water surface profiles, corresponding to 2
range of discharges. The range of discharges should
encompass the range of flows that will be routed through
the river reach. The storage volumes are computed by
multiplying the cross-sectional area, under a specific flow
profile, by the channel reach lengths. Volumes are
calculated for each flow profile and then plotted against
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Table 9-1
Storage Routing Calculation
4 {2) {3 4 (5} {8 {7)
Average i + 2 : i
Time inflow inflow At 2 Qutflow At S
(he) {cfs} (cfs) (cfs} (cfs) {cfs) {acre-ft}
0 3,000 8,600 3,000 7,100 1,760
3,130
3 3,260 8,730 3,150 7,155 1.774
3445
6 3,630 - 9,025 3,400 7.325 1,816
3,825
9 4,020 9,450 3,850 7,525 1,866
4,250
12 4,480 9,850 4,300 7,700 1909 -
eic.

the corresponding discharge at the outlet. If channel or
levee modifications will have an effect on the routing
through the reach,modifications can be made to the cross

. sections, water surface profiles recalculated, and a revised
_storage-outflow relationship can be developed. The

impacts of the channel or levee modification can be
approximated by routing floods with both pre- and post-
project storage-outflow relationships.

(c) Observed water swrface profiles, obtained from
high water marks, can be used to compute storage-outflow
relationships. Sufficient stage data over a range of floods
are required for this type of calculation; however, it is not
likely that enough data would be available over the range
of discharges needed to compute an adequate storage
discharge relationship. If a few observed profiles are
available, they can be used to calibrate a steady-flow
water surface profile model for the channel reach of
interest. Then the water surface profile madel could be
used to calculate the appropriate range of values to calcu-
late the storage-outflow relationship.

(d) Normal depth associated with uniform flow does
not exist in natural streams; however, the concept can be
used to estimate water depth and storage in natural rivers

if uniform flow conditions can reasonably be assumed.
With a typical cross section, Manning’s equation is solved
for a range of dischaiges, given appropriate “n” values
and an estimated slope of the energy grade line. Under
the assumption of uniform flow conditions, the energy
slope is considered equal to the average channel bed

| slope; therefore, this approach should net be applied in

backwater areas.

(e) Observed inflow and outflow hydrographs can be
used to compute channel storage by an inverse process of
flood routing. When both inflow and outflow are known,
the change in storage can be computed, and from that a
storage versus outflow function can be developed. Tribu-
tary inflow, if any, must also be accounted for in this
calculation. The total storage is computed from some
base level storage at the beginning or end of the routing

sequence.

(fy Inflow and outflow hydrographs can also be used
to complte routing criteria through a process of iteration
in which an initial set of routing criteria is assumed, the
inflow hydrograph is routed, and the results are evaluated.
The process is repeated as necessary until a suitable fit of
the routed and observed hydrograph is obtained.

9-9
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3) _Deterrflining the m_;mber of routing Steps. _In NSTPS = E (9-13)
reservoir routing, the modified puls method is applied A
with one routing step. This is under the assumption that
the travel time through the reservolr is smaller than the
In channel routing, the travel where

computation interval at.
time through the river reach is often greater than the
computation interval. When this occurs, the channel must
be broken down into smaller routing steps fo simulate the
floodwave movement and changes in hydrograph shape.
The number of steps (or reach lengths) affects the attenua-
tion of the hydrograph and should be obtained by calibra-
tion. The maximum amount of attenuation will occur
when the channel routing computation is done in one step.
As the number of routing steps increases, the amount of
attenuation decreases. An initial estimate of the number
of routing steps (NSTPS) can be obtained by dividing the
total travel time (K) for the reach by the computation
interval af.

9-12

K= floodwave travel time through the reach

L = channel reach length

V., = velocity of the floodwave (not average velocity)

NSTPS = number of routing steps

The time interval af is usually determined by ensuring
that there is a sufficient number of points on the rising
side of the inflow hydrograph. A general rule of thumb is
that the computation interval should be less than 1/5 of
the time of rise () of the inflow hydrograph.




(9-14)
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¢. Muskingum method. The Muskingum method was
developed to directly accommodate the looped relation-
ship between storage and outflow that exists in rivers.
With the Muskingum method, storzge within a reach is
visualized in two parts: prism storage and wedge storage.
Prism storage is essentially the storage under the steady-
flow water surface profile. Wedge storage is the addi-
tional storage under the actual water surface profile. As
shown in Figure 9-11, during the rising stages of the
floodwave the wedge storage is positive and added to the

-prism storage. During the falling stages of a floodwave,

the wedge storage is negative and subtracted from the
prism storage.

(1) Development of the Muskingum routing equation.

(a) Prism storage is computed as the outflow (0)
times the travel time through the reach (K). Wedge stor-
age is computed as the difference between inflow and
outflow (I-0) times a weighting coefficient X and the
travel time K. The coefficient K corresponds to the travel
time of the floodwave through the reach. The parameter
X is a dimensicoless value expressing a weighting of the
relative effects of inflow and ouiflow on the storage (5}
within the reach. Thus, the Muskingum method defines
the storage in the reach as a linear function of weighted
inflow and ouiflow:

EM 1110-2-1417
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§ = prism storage + wedge storage
S = KO + KX(I-O)
S = K [XI + (1-X)0] {5-15)
where

§ = tofal storage in the routing reach

( = rate of outflow from the routing reach

I = rate of inflow to the routing reach

K = travel ume of the floodwave throuéh the reach

X = dimensionless weighting factor, ranging from
0.0t0 0.5

{b) The quantity in the brackets of Equation 9-15 is
considered an expression of weighted discharge. When
X = .0, the equation reduces to § = KO, indicating that
storage is only a function of outflow, which is equivalent
to level-pool reservoir routing with storage as a linear
function of outflow. When X = 0.5, equal weight is given
to inflow and outflow, and the condition is equivalent to a
uniformly progressive wave that does not attenuate. *Thus,
“0.0” and “0.5” are limits on the value of X, and within
this range the value of X determines the degree of attenu-
ation of the floodwave as it passes through the routing

Wedge Storage

Qutflow
e

NACACASAS AN

(a)

Wedge Slorage
(Negative)

B

Figure 9-11. Muskingum prism and wedge storage concept
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reach. A value of “0.0” produces maximum atfenuation,
and “0.5” produces pure transtation with no attenuation.

" (¢) The Muskingum routing equation is obtained by

combining Fquation 9-15 with the continuity equation,
Equation 9-11, and solving for O,.

0, = Cl, + CI + C0, (9-16)

The subscripts 1 and 2 in this equation indicate the begin-
ning and end, respectively, of a time interval az. The
routing coefficients C,, C,, and C, are defined in terms of
at, K, and X

Cl - Ar - 2KX (9-17)
IK(L - X) + A

C2 - Ar + 2KX (9-18)
IK( - X + At

- 2K(1 - X) - AI (9_[9)

O i S e
2K(1 - X) + Af

Given an inflow hydrograph, a selected computation inter-
val af, and estimates for the parameters & and X, the
outflow hydregraph can be calculated.

(2) Determination of Muskingum K and X. In a
gauged situation, the Muskingum X and X parameters ¢an
be calculated from observed inflow and outflow hydro-
graphs. The travel time, K, can be estimated as the inter-
val between similar points on the inflow and outflow
hydrographs. The travel time of the routing reach can be
calculated as the elapsed time between centroid of areas
of the two hydrographs, between the hydrograph peaks, or
between midpoinis of the rising limbs., After X has been
estimated, a value for X can be obtained through trial and
error. Assume a value for X, and then route the inflow
hydrograph with these parameters. Compare the routed

hydrograph with the observed outflow hydrograph. Make

adjustments to X to obtain the desired fit. Adjustments to
the original estimate of K may also be necessary to obtain
the best overall fit between computed and observed hydi-
ographs. In an ungauged situation, a value for X can be
estimated as the travel time of the floodwave through the
routing reach. The floodwave velocity (V) is greater
than the average velocity at a given cross section for a
given discharge. The floodwave velocity can be estimated
by a number of different technigues:

9-14

{(a) Using Seddon’s law, a floodwave velocity can be
approximated from the discharge rating eurve at a station
whose cross section 1§ representative of the routing reach.
The slope of the discharge rating curve is equal to 40/dy.
The floodwave velocity, and therefore the travel time K,
can be estimated as follows:

y =149 (9-20)
Y B dy
L
K=_" 9-21
7 (5-21)
- where

v, = ﬂoodwave.velocity, in feet/second
B = top width of the water surface
L = length of the routing reach, in feet

(b) Another means of estimating floodwave velosity
is to estimate the average velocity (V) and multiply it by a
ratio. The average velocity can be calcufated from
Manning’s equation with a representative discharge and
cross section for the routing reach. For various channel
shapes, the floodwave velocity has been found to be 2
direct ratio of the average velocity.

Channel shape Ratio V./V

Wide rectangular 1.67

Wide parabolic 1.44
1.33

Triangular

For natural channels, an average ratio of 1.5 is suggested.
Once the wave speed has been estimated, the travel time
(K} can be calculated with Equation 9-21.

(c) Estimating the Muskingum X parameter in an
ungauged sitmation can be very difficult. X varies
between 0.0 and 0.5, with 0.0 providing the maximum
amount of hydrograph attenuation and (0.5 no attenuation.
Experience has shown that for channels with mild slopes
and flows that go out of bank, X will be closer to 0.0.
For steeper streams, with well defined channels that do
not have flows going out of bank, X" will be closer to 0.5.
Most natural channels lie somewhere in between these
two limits, leaving a lot of room for “engincering judg-
ment.” One equation that can be used to estimate the
Muskingum X coefficient in ungauged areas has been




developed by Cunge (1969). This equation is taken from
the Muskingum-Cunge channel routing method, which is
described in paragraph 9-3e. The equation is written as
follows:

P L (9-22)
2 BS cAx
where
0, = reference flow from the inflow
hydrograph
¢ = floodwave speed
S, = friction slope or bed slope
B = top width of the flow area
ax = length of the routing subreach

The choice of which flow rate to use in this equation is
not completely clear. Experience has shown that a refer-
ence flow based on average values (midway between the
base flow and the peak flow) is in general the most suit-
able chotce. Reference flows based on peak flow values
tend to accelerate the wave much more than it would in
nature, while the converse is true if base flow reference
values are used (Ponce 1983).

{3) Selection of the number of subreaches. The
Muskingum equation has a constraint related to the rela-
tionship between the parameter X and the computation
interval af. Ideally, the two should be equal, but af
should not be less than 2KX to aveid negative coefficients
and instabilities in the routing procedure.

2KX < At <K (9-23)

A long routing reach should be subdivided into
subreaches so that the travel time through each subreach
is approximately equal to the routing interval az. That is:

Number of subreaches = A£
{

This assumes that factors such as channel geometry and
roughness have been taken into consideration in determin-
ing the length of the routing reach and the travel time K.
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d. Working R&D routing procedure. The Working
R&D procedure is a storage routing technique that accom-
modates the nonlinear nature of floodwave movement in
natural channels. The method is useful in sifuations
where the use of a variable K {reach travel time) would
assist in obtaining accurate answers. A nonlinear storage-
outflow relationship indicates that a variable K is neces-
sary. The method is also useful in situations wherein the
horizontal reservoir surface assumption of the medified
puls procedure is not applicable, such as normally occurs
in natural channels.

(1) The working R&D procedure could be termed
“Muskingum with a variable X7 or “modified puls with
wedge storage”” For a straight line storage-discharge
(weighted discharge) relation, the procedure is the same
solution as the Muskingum method. For X = 0, the proce-
dure is identical to Modified Puls.

(2} The basis for the procedure derives from the
concept of a “working discharge,” which is a hypothetical
steady flow that would result in the same natuial channel
storage that ocours with the passage of a floodwave.
Figure 9-12 illustrates this concept.

where
I =reach inflow
O = reach outflow

D = working value discharge or simply wortking
discharge

(3} The wedge storage (WS} may be compufed in
the following two ways: As in the Muskingum technique
where X is a weighting factor and X is reach travel time:

WS = KX (I-0) (5-24)
or using the working discharge (D) concept:
WS = K (D-0) (9-25)
equating and solving for O:
(9-26}

K (D-0) = KX (I-0)
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WEDGE STORAGE

PRISM STORAGE

Figure 9-12. lllustration of the “working discharge” concept

or

0=0-_% (-n (9-27)
1-X
The continuity equation may be approximated by:
S, -8
ZAt L=05( +1)-05(0, +0) (9-28)
where
S = storage

Al = time increment

Substituting Equation 9-27 into 9-28 and appending the
appropriate subscripts to denote beginning and end of
period and performing the appropriate algebra yields:
0541, + L} + [S{1 - X) - 0.50,44]
=[5 - X} + 05D A1

(9-2%)

9-16

Let

R=8( -X +05DAr (9-30)

where R is termed the “working value of storage” or
simply working storage and represents an index of the
frue natural storage. FEquation 9-29 may therefore be
written:

R, =R, +05M ({, +1) - DA (9-31}

transposing a¢ results in the equation used in routing
computations:

(9-32)

k& 05 +L)-D
= _ "+ Q. + -

At At ! ¢ !
The form of the relationship for R (working discharge) is
analogous to storage indication in the modified puls pro-
cedure. R,/af may be computed from information known
at the beginning of a routing interval. The outflow at the
end of the routing interval may then be determined from a




rating curve of working storage versus working discharge.

The cycle is then repeated stepping forward in time.

(4) The solution scheme using this concept requires
development of a rating curve of working storage versus
working discharge as stated above. The following column
headings are helpful in developing the function when
storage-outflow data are available.

| 2 3

s ., Working
Storage {S) = (=% Discharge (D)

5

4
D 5 D
_ — {-x +
2 At( ) 2

(5) Column 2 of the tabulation is obtained from col-
gmn [ by using an appropriate conversion factor and
appropriate X. The conversion factor of 1 acre-ft/hour =
12.1 ¢fs is useful in this regard. Column 5 is the sum of
columns 2 and 4. Column 3 is plotted against column 5
on cartesian coordinate paper and a curve drawn through
the plotted points. This represents the working discharge-
working outflow rating curve. An example curve is
shown in Figure 9-13.

(6) The routing of a hydrograph can be performed as
the one shown in Table 9-2. The procedure, in narrative
form is:

* Conditions known at time 1: [, Ol,‘DU and Ry/at.

« At time 2, oaly [, is known, therefore:

R
2 _ i
=" t0S¢ L) - D,

= Enter working storage, working discharge function,
and read out D,

» Caleulate O, as follows:

0,=D,-_ 2 (I -D)
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= Repeat process until finished.

e. Muskingum-Cunge channel  routing. The
Muskingum-Cunge channel routing technique is 2 nonlin-
ear coefficient method that accounts for hydrograph diffu-
sion based on physical channel properties and the
inflowing hydrograph. The advantages of this method
over other hydrologic techniques are the parameters of the
model are more physically based; the method has been
shown to compare well against the full unsteady flow
equations over a wide range of flow situations (Ponce
1983 and Brunner 1989); and the solution is independent

. of the user-specified computation interval. The major

limitations of the Muskingum-Cunge technique are that it
cannot account for backwater effects, and the method
beging to diverge from the full unsteady flow solution
when very tapidly rising hydrographs are routed through
flat chanunel sections.

(1} Development of equations.

{a) The basic formulation of the equations is derived
from the continuity Equation 9-33 and the diffusion form
of the momentum Equation 9-34:

a4 99 | (9-33)
r

aY
§=5 -2 9-34)
4 ° ax (

(b} By combining Equations 9-33 and 9-34 and
lincarizing, the following convective diffusion equation is
formulated {(Miller and Cunge 1975}

Q0 + Y = CAY + 9-35
R (5-35)

where
O = discharge, in cubic feet per second
A = flow area, in square feet
¢t = time, in seconds
x = distance along the channel, in feet

¥ = depth of flow, in feet

9-17
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Figure 9-13. Rating curve for working R&D routing

g, = lateral inflow per unit of channel length

S, = friction slope

§, = bed slope
¢ = the wave celerity in the x direction as defined
below

The wave celerity (¢) and the hydraulic diffusivity (i) are
expressed as follows:

c=2 (9-36)
7]

- 2 937

hop 5 (9-37)

9-18

where 8 is the top width of the water surface. The con-
vective diffusion Equation 9-35 is the basis for the
Muskingum-Cunge method.

{c) In the original Muskingum formulation, with
lateral inflow, the continuity Equation 9-33) is discretized
on the x-t plane (Figure 9-14) to yield:

fo[‘ = C1Qf‘n + Cfo'r] * ngjf! * CesQ.r. (9-38)

It is assumed that the storage in the reach is expressed as
the classical Muskingum storage:

S = K [X1 + (1-%)0] (5-39)
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Table 9-2
Working R&D Routing Example
K
Average + 050, + L) - D,
Time Inflow tnflow D Q
fr cfs cfs cfs cfs cfs
3,000 7,100 3,000 3,000
3,130
3 3,260 7.230° 3,100 3,060
3,445
6 3,630 7,575 3,300 3,220
3,825
9 4,020 8,100 3,800 3,745
4,250 ‘
12 4,480 8,550 4,400 4,420
where Al
2(5h
C = K
§ = channel storage Ly T
> (1 -4

K = cell travel time (seconds)

X = weighting factor

I = inflow

O = outflow

Therefore, the coefficients can be expressed as follows:

2

AL oy
K
Ar
— + Xl -
7 (1 -5
E 2X
K
Af
— + 21 -
e (t ~x
At
21 - - =
(1 - X 7
Af '
— + 2(1 -
e (1 -x)
= q,AX

(d} In the Muskingum equation the amount of diffu-
sion is based on the value of X, which varies between 0.0
and 0.5. The Muskingum X parameter is not directly
related to physical channel properties. The diffusion
obtained with the Muskingum technique is a function of
how the equation is solved and is therefore considered
numerical diffusion rather than physical. Cunge evaluated
the diffission that is produced in the Muskingum equation
anid analytically solved for the following diffusion
coefficient:

H-cm(%-xJ (9-40)

In the Muskingum-Cunge formulation, the amount of
diffusion is controlled by forcing the numerical diffusion
to match the physical diffusion of the convective diffusion
Equation 9-35. This is accomplished by setting Equa-
tions 9-37 and 9-40 equal to each other The
Muskingum-Cunge equation is therefore considered an
approximation of the convective diffusion Equation 9-35.
As a result, the parameters K and X are expressed as
follows (Cunge 1969 and Ponce and Yevjevich 1978):

9-19
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Figure 9-14. Discretization of the continuity equation on x-t plane

k- (9-41)
C
e (9-42)
7| BScAx

(2} Solution of the equations.

{a) The method is nonlinear in that the flow hydrau-

lics

(@, B, c), and thercfore the routing coefficients

(C,, Gy, C,, and C) are recalculated for every ax dis-
tance step and af time step. An Herative four-point

averaging scheme is used to solve for ¢, B, and . This
process has been described in detail by Ponce (1986},

(b) Values for ar and ax are chosen for accuracy
and stability. First, at should be evaluated by looking at
the following three criteria and selecting the smallest
value: (1) the user-defined computation inferval, (2) the
time of rise of the inflow hydrograph divided by 20
(™,0), and (3) the travel time through the channel reach.
Once af is chosen, ax is defined as follows:

Ax = cit (9-43)




but ax must also meet the following criteria to preserve
counsistency in the method (Ponce 1983):

Ar< Lear+ 2 (0-44)
2 BSc

where (3, is the reference flow and O, is the baseflow
taken from the inflow hydrograph as:

Qu = QB + 0'50 (Qpeak - QB)

(3) Data requirements.

(a) Data for the Muskingum-Cunge method consist of
the following:

< Representative channel cross section.
*  Reach length, L.

«  Manning roughness coefficients, n (for main
channel and overbanks).

»  Friction slope (S) or channel bed slope (S,).

(b) The method can be used with a simple cross sec-
tion (i.e., trapezoid, rectangle, square, triangle, or circular
pipe) or a more detailed cross section (i.e., cross sections
with a left overbank, main channel, and a right overbank).
The cross section is assumed to be representative of the
entire routing reach. If this assumption is not adequate,
the routing reach should be broken up into smaller sub-
reaches with representative cross sections for each. Reach

. lengths are measured directly from topographic maps.

Roughness coefficients (Manning’s n) must be estimated
for main channels as well as overbank areas. If
information is available to estimate an approximate energy
grade line slope (friction slope, &), that slope should be
used instead of the bed slope. If no information is avail-
able to estimate the slope of the energy grade line, the
channel bed slope should be used.

(4} Adventages and limitations. The Muskingum-
Cunge routing technique is considered to be a nonlinear
coefficient method that accounts for hydrograph diffusion
based on physical channel properties and the inflowing
hydrograph. The advantages of this method over other
hydrolegic techniques are: the parameters of the model
are physically based, and therefore this method will make
for a good ungauged routing technique; several studies
have shown that the method compares very well with the
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full unsteady flow equations over a wide range of flow
conditions (Ponce 1983 and Brunner 1989); and the solu-
tion is independent of the user-specified - computation
interval. The major limitations of the Muskingum-Cunge
technique are that the method can not account for back-
water effects, and the method begins to diverge from the
complete unsteady flow solution when very rapidly rising
hydrographs {i.e., less than 2 hr) are routed through flat
channel sections (i.e., channel slopes less than | ft/mile).
For hydrographs with tonger rise times (7)), the method
can be used for channel reaches with slopes less than
! fi/mile.

9-4. Applicability of Routing Techniques

a. Selecting the appropriate routing method. With
such a wide range of hydraulic and hydrologic routing
techniques, selecting the appropriate routing method for
each specific problem is not clearly defined. However,
certain thought processes and some general guidelines can
be used to narrow the choices, and ultimately the selection
of an appropriate method can be made.

b. Hydrologic routing method. Typically, in rainfall-
runoff analyses, hydrologic routing procedures are utilized
on a reach-by-reach basis from upstream to downstream.
In general, the main geal of the rainfall-runoff study is to
calculate discharge hydrographs at several locations in the
watershed. In the absence of significant backwater
effects, the hydrologic routing models offer the
advantages of simplicity, ease of use, and computational
efficiency. Also, the accuracy of hydrologic methods in
calculating discharge hydrographs is normally well within
the range of acceptable values. It should be remembered,
however, that insignificant backwater effects alone do not
always justify the use of a hydrologic method. There arc
many other factors that must be considered when deciding
if a hydrologic model will be appropriate, or if it is neces-
sary to use a more detailed hydraulic model.

¢. Hydraulic routing method. The full unsteady
flow equations have the capability to siaulate the widest
range of flow - situations and channel characteristics.
Hydraulic models, in general, are more physically based
since they only have one parameter {the roughness coeffi-
cient} to estimate or calibrate. Roughness coefficients can
be estimated with some degree of accuracy from inspec-
tion of the waterway, which makes the hydraulic methods
more applicable to ungauged situations.

d. Evaluating the routing method. There are several

factors that should be considered when evaluating which
routing method is the most appropriate for a given
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situation. The following is a list of the major factors that
should be considered in this selection process:

(1) Backwater effects. Backwater effects can be
fidal fluctuations, significant tributary
inflows, dams, bridges, culverts, and channei constric-
tions. A floodwave that is subjected te the influences of
backwater will be atienuated and delayed in time. Of the
hydrologic methods discussed previously, only the modi-
fied puls method is capable of incorporating the effects of
backwater into the solution. This is accomplished by
calculating a storage-discharge relationship that has the
effects of backwater included in the relationship. Storage-
discharge relationships can be determined from steady
flow-water surface profile calculations, observed water
surface profiles, normal depth calculations, and observed
inflow and outflow hydrographs. All of these technigues,
except the normal depth calculations, are capable of
including the effects of backwater into the storage-dis-
charge relationship. Of the hydraulic methods discussed
in this chapter, only the kinematic wave technique is not
capable of accounting for the influences of backwater on
the floodwave. This is due to the fact that the kinematic
wave equations are based on uniform flow assumptions
and a normal depth downsiream boundary condition.

(2} Floodplains. When the flood hydrograph reaches
a magnitude that is greater than the channels carrying
capacity, water flows out into the overbank areas.
Depending on the characteristics of the overbanks, the
flow can be slowed greatly, and often ponding of water
can occur. The effects of the floodplaing on the flood-
wave can be very significant. The factors that are imnpor-
tant in evaluating to what extent the floodplain will
impact the hydrograph are the width of the floodplain, the
slope of the floodplain in the lateral direction, and the
resistance to flow due to vegetatien in the floodplain. To
analyze the fransition from main channel to overbank
flows, the modeling technique must account for varying
conveyance between the main channel and the overbank
areas. For 1-D flow models, this is normaily accom-
plished by calculating the hydraulic properties of the main
channel and the overbank areas separtately, then combin-
ing them to formulate 2 composite set of hydraulic rela-
tionships. This can be accomplished in all of the routing
methods discussed previously except for the Muskingum
method. The Muskingum method is a linear routing
technique that uses coefficients to account for hydrograph
timing and diffusion. These coefficients are usually held
constant during the routing of a given floodwave. While
these coefficients can be calibrated to match the peak
flow and timing of a specific flood magnitude, they can
not be used to model a range of floods that may remain in
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bank or go out of bank. When modeling floods through
extremely flat and wide floodplains, the assumption of
1-D flow in itself may be inadequate. For this flow con-
dition, velocities in the lateral direction (across the flood-
plain) may be just as predominant as those in the
longitudinal direction (down the chanrel). When this
oceurs, a two-dimensional (2-D) flow model would give a
more accurate representation of the physical processes.
This subject is beyond the scope of this chapter. For
more information on this topic, the reader is referred to
EM 1110-2-1416.

(3) Channel slope and hydrograph characteristics.
The slope of the channel will not only affect the velocity
of the floodwave, but it can also affect the amount of
attenuation that will occur during the routing process.
Steep channel slopes accelerate the floodwave, while mild
channel slopes are prone to slower velocities and greater
amounts of hydrograph attenuation. Of ail the routing
methods presented in this chapter, only the complete
unsteady flow equations are capable of routing flood-
waves through channels that range from steep to
extremely flat slopes. As the channel slopes become
flatter, many of the methods begin to break down. For
the simplified hydraulic methods, the terms in the
momentum equation that were excluded become more
important in magnitude as the channel slope is decreased.
Because of this, the range of applicable channel slopes
decreases with the number of terms excluded from the
momentum equation. As a e of thumb, the kinematic
wave equations should only be applied to relatively steep
channels (10 ft/mile or greater). Since the diffusion wave
approximation includes the pressure differential term in
the momentum equation, it is applicable to a wider range
of slopes than the kinematic wave equations. The diffu-
sion wave technique can be used to route slow rising
floodwaves through extremely flat slopes.  However,
rapidly rising floodwaves should be [imited to mild to
steep channel slopes (approximately 1 ft/mile or greater).
This limitation is due to the fact that the acceleration
terms in the momentum equation increase in magnitude as
the time of rise of the inflowing hydrograph is decreased.
Since the diffusion wave method does not include these
accelerafion terms, routing rapidly rising hydrographs
through flat channel slopes can result in errors in the
amount of diffusion that will occur. While “rules of.
fhumb” for channe! slopes can be established, it should be
realized that it is the combination of channel slope and
the time of rise of the inflow hydrograph together that
will determine if a method is applicable or not.

(a) Ponce and Yevjevich (1978) established a numer-
ical criteria for the applicability of hydraulic routing




techniques. According to Ponce, the error due to the use
of the kinematic wave model (error in hydrograph peak

- accumulated after an clapsed time equal to the hydrograph
duration) is within 5 percent, provided the following
inequality is satisfied:

Bk 5 1m (9-45)
where
T = hydrograph duration, in seconds
S, = friction siope or bed slope
u, = reference mean velocity
d, = reference flow depth

When applying Equation 9-45 to check the validity of
using the kinematic wave model, the reference values
should correspond as closely as possible to the average
flow conditions of the hydrograph to be routed.

(b) The error due to the use of the diffusion wave
mode! is within 5 percent, provided the following inequal-
ity is satisfied:

I

75,12 =30
d

[

(9-46)

where g = acceleration of gravity. For instance, assume
S, = 0.001, u, = 3 {t/s, and 4, = 10 ft. The kinematic
wave model will apply for hydrographs of duration larger
than 6.59 days. Likewise, the diffusion wave model will
apply for hydrographs of duration larger than 0.19 days.

{c) Of the hydrologic methods, the Muskingum-
Cunge method is applicable to the widest range of chan-
ne! slopes and inflowing hydrographs. This is due to the
fact that the Muskingum-Cunge technique is an approxi-
mation of the diffusion wave equations, and therefore can
be applied to channel slopes of a similar range in magni-
tude. The other hydrologic techniques use an approximate
" relationship in place of the momentum equation. Experi-
ence has shown that these techniques should not be
applied to channels with slopes less than 2 ft/mi.
However, if there is gauged data available, some of the
parameters of the hydrologic methods can be calibrated to
produce the desired attenuation effects that occur in very
flat streams.
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(4) Tlow networks. In a dendrific stream system, if
the tributary flows ot the main channel flows do not cause
significant backwater at the confluence of the two
streams, any of the hydraulic or hydrologic routing meth-
ods can be applied. If significant backwater does occur at
the confluence of two streams, then the hydraulic methods
that can account for backwater (full unsteady flow and
diffusion wave) should be applied. For full networks,
where the flow divides and possibly changes direction
during the event, only the full unsteady flow equations
and the diffusion wave equations can be applied.

(5) Subcritical and supercritical flow. During a
flood event, a stream may experience transitions between
subcritical and supercritical flow regimes. If the super-
critical flow reaches are long, or if it is important to cal-
culate an accurale stage within the supercritical reach, the
transitions between subcritical and supercritical flow
should be treated as internal boundacy conditions and the
supercritical flow reach as a separate routing  section.
This is normally accomplished with hydraulic routing
methods that have specific routines to handle supercrifical
flow. In general, none of the hydrologic methods have
knowledge about the flow regime (supercritical or suberit-
ical), since hydrologic methods are only concerned with
flows and not stages. If the supercritical flow reaches are
short, they will not have a noticeable impact on the dis-
charge hydrograph. Therefore, when it is only important
to calculate the discharge hydrograph, and not stages,
hydrologic routing methods can be used for reaches with
small sections of supercritical flow.

(6) Observed data. In general, if observed data are
not available, the routing methods that are more physi-
cally based are preferred and will be easier to apply.
When gauged data are available, all of the methods should
be calibrated to match observed flows andfor stages as
best as possible. The hydraulic methods, as well as the
Muskingum-Cunge technique, are considered physically
based in the sense that they only have one parameter
(roughness coefficient) that must be estimated or cali-
brated. The other hydrologic methods may have more
than one parameter to be estimated or calibrated. Many
of thes¢ paramelers, such as the Muskingum X and the
number of subreaches (NSTPS), are not related directly to
physical aspects of the chaunel and inflowing hydrograph.
Because of this, these methods are generally not used in
ungauged situations. The final choice of a routing model
is also influenced by other factors, such as the required
accuracy, the type and availability of data, the type of
information desired (flow hydrographs, stages, velocities,
etc.), and the familiarity and experience of the user with a
given method, The modeler must take all of these factors
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into consideration when selecting an appropriate roufing
technique for a specific problem. Table 9-3 contains a
list of some of the faciors discussed previously, along
with some guidance as to which routing methods are

inclusive.

appropriate and which are not. This table should be used
as guidance in selecting an appropriate method for routing
discharge hydrographs.

By no means is this table all

Table 9-3

Selecting the Appropriate Channel Routing Technique

Factors to consider in the selection of a

Methods thal are appropriate for this
specific factor.

Methods that are not appropriate for this
factor.

routing technique.

1. No observed hydrograph data available
- for calibration.

* Full Dynamic Wave
* Diffusion Wave

* Kinemafic Wave

* Muskingum-Cunge

* Modified Puls
* Muskingum
* Working R&D

2. Significant backwater that will influence
discharge hydrograph.

* Full Dynamic Wave
* Diffusion Wave

* Modified Puls

* Working R&D

* Kinematic \Wave
* Muskingum
* Muskingum-Cunge

3. Flood wave will go out of bank into the * All hydraulic and hydrofagic methods that | * Muskingum
flood plains. calculate hydraulic properties of main
channel separate from overbanks.
4. Channel slope > 10 ft/mile * All methods presented * None
TS u
2% =171
and d"

5. Channel slopes from 10 to 2 fi/mile and

TS u
72 <171
d

]

* Full Dynamic Wave
* Diffusion Wave

* Muskingum-Cunge
* Modified Puls

* Muskingum

* Working R&D

* Kinematic Wave

6. Channel slope < 2 ft/mile and

* Full Dynamic Wave
* Diffusion Wave

* Kinematic Wave
* Modified Puls

472
g * Muskingum-Cunge * Muskingum
TS - = 30 * Working R&D
L
7. Channel slope < 2 it/mile and * Full Dynamic Wave * All others
i2 -
TS{ 2| <30
da
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. HAND OUT 21: Kinematic wave (Chapter 6 of our syllabus). Sources:
Altinakar, M., and Graf, W. (1998). “Fluvial Hydraulics.” John Wiley and Sons
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HAND OUT 22: Continuous seurce of a pollutant (Chapter 7 of our
syllabus). Sources: Altinakar, M., and Graf, W. (1998). “Fluvial Hydraulics.” John
Wiley and Sons, and Koutitas, C. G. (1983). “Elements of computational
hydraulics.” Pentech Press, UK.
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FLUVIAL HYDRAULICS

In the absence of velocity, V=0, eq. 8.35 becomes evidently eq. 8.32.

For one-dimensional convection-diffusion in the x-direction, in a channel with a
weak velocity, u = U, being uniformly distributed over the flow depth, the above
equation, eq. 8.35, can be written as :

(x-vg (8.36)

° _
(xt) = et

————exp|-
A /4'n: £,
where C is the average concentration in a section, S, of the channel.

The total mass of the substance, My, introduced instantaneously and uniformly over
the section, S, defines :

= —Mﬂ = f Cx,t)dx = f C(x,0) dx (8.27a)

All remarks made for pure diffusion (see sect. 8.2.1) remain valid; the velocity of
translation, u or U, is taken into account by coordinate transformation, x' = x --ut
or x'=x—Ut (see Fig. 8.3 and Fig. 8.6}.

The mass, My, displaces itself with the velocity of translation, U, and at the same
time it spreads out according to the normal curve (see Fig. 8.6). The maximum
concentration, C,,.,., is propagated with the velocity and it decreases with time.

Cix,9

1H4n smtI

NN

o™

Fig. 8.6 Evolution of the concentration, C(x,t), for a mass, My, injected
instantaneously at x = x,, into a medium in motion, U.
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= 8.3.2 Continuous Source

Considered will be the one-dimensional convection-diffusion in a medium moving
with a non-zero velocity, V(u,0,0) # 0.

At a certain station, x = 0, an average concentration is introduced in a continuous
and constant way, C, = Cte.

The average velocity, U, being weak (without distribution over the flow depth)
transports the average concentration, C, and diffusion takes place at the same time.

The solution to the one-dimensional convection-diffusion equation (see eq. 8.6b) is
(see Daily et Harleman, 1966, p. 434) given by :

x+ Ut x-Ut (8.37)

Co Ux
Clxt) = - exp 8—m— erfc ﬁ +¢rfc m

In the absence of velocity, U =0, eq. 8.37 becomes evidently eq. 8.33.

The evolution of the concentration, C(x,t), is shown at Fig. 8.7. Note that the
concentration of the value Co/2 displaces itself with the velocity of the flow, U.

Fig. 8.7 Evolution of the concentration, C(x,t), for a concentration, C,,
introduced continuously into a flow with an average velocity, U.
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HAND OUT 23: Numerical schemes to solve the advection and diffusion
equations (Chapter 7 of our syllabus).
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