

9.3 HYDROLOGIC RIVER ROUTING

The *Muskingum method* is a commonly used hydrologic routing method that is based upon a variable discharge-storage relationship. This method models the storage volume of flooding in a river channel by a combination of wedge and prism storage (Figure 9.3.1). During the advance of a flood wave, inflow exceeds outflow, producing a wedge of storage. During the recession, outflow exceeds inflow, resulting in a negative wedge. In addition, there is a prism of storage that is formed by a volume of constant cross-section along the length of prismatic channel.

Assuming that the cross-sectional area of the flood flow is directly proportional to the discharge at the section, the *volume of prism storage* is equal to KQ , where K is a proportionality coefficient (approximate as the travel time through the reach), and the *volume of wedge storage* is equal to $KX(I - Q)$, where X is a weighting factor having the range $0 \leq X \leq 0.5$. The total storage is defined as the sum of two components,

$$S = KQ + KX(I - Q) \quad (9.3.1)$$

which can be rearranged to give the storage function for the Muskingum method

$$S = K[XI + (1 - X)Q] \quad (9.3.2)$$

and represents a linear model for routing flow in streams.

The value of X depends on the shape of the modeled wedge storage. The value of X ranges from 0 for reservoir-type storage to 0.5 for a full wedge. When $X = 0$, there is no wedge and hence no backwater; this is the case for a level-pool reservoir. In natural streams, X is between 0 and 0.3, with a mean value near 0.2. Great accuracy in determining X may not be necessary because the results of the method are relatively insensitive to the value of this parameter. The parameter K is the time of travel of the flood wave through the channel reach. For hydrologic routing, the values of K and X are assumed to be specified and constant throughout the range of flow.

The values of storage at time j and $j + 1$ can be written, respectively, as

$$S_j = K[XI_j + (1 - X)Q_j] \quad (9.3.3)$$

$$S_{j+1} = K[XI_{j+1} + (1 - X)Q_{j+1}] \quad (9.3.4)$$

Using equations (9.3.3) and (9.3.4), the change in storage over time interval Δt is

$$S_{j+1} - S_j = K\{[XI_{j+1} + (1 - X)Q_{j+1}] - [XI_j + (1 - X)Q_j]\} \quad (9.3.5)$$

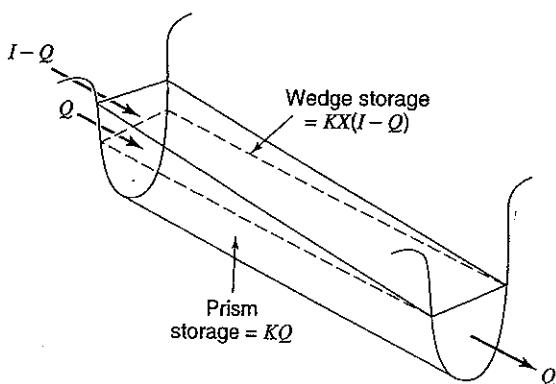


Figure 9.3.1 Prism and wedge storages in a channel reach.

The change in storage can also be expressed using equation (9.2.1). Combining equations (9.3.5) and (9.2.1) and simplifying gives

$$Q_{j+1} = C_1 I_{j+1} + C_2 I_j + C_3 Q_j \quad (9.3.6)$$

which is the routing equation for the Muskingum method, where

$$C_1 = \frac{\Delta t - 2KX}{2K(1-X) + \Delta t} \quad (9.3.7)$$

$$C_2 = \frac{\Delta t + 2KX}{2K(1-X) + \Delta t} \quad (9.3.8)$$

$$C_3 = \frac{2K(1-X) - \Delta t}{2K(1-X) + \Delta t} \quad (9.3.9)$$

Note that $C_1 + C_2 + C_3 = 1$.

The routing procedure can be repeated for several sub-reaches (N_{steps}) so that the total travel time through the reach is K . To insure that the method is computationally stable and accurate, the U.S. Army Corps of Engineers (1990) uses the following criterion to determine the number of routing reaches:

$$\frac{1}{2(1-X)} \leq \frac{K}{N_{\text{steps}} \Delta t} \leq \frac{1}{2X} \quad (9.3.10)$$

If observed inflow and outflow hydrographs are available for a river reach, the values of K and X can be determined. Assuming various values of X and using known values of the inflow and outflow, successive values of the numerator and denominator of the following expression for K , derived from equations (9.3.5) and (9.3.8), can be computed using

$$K = \frac{0.5\Delta t [(I_{j+1} + I_j) - (Q_{j+1} + Q_j)]}{X(I_{j+1} - I_j) + (1-X)(Q_{j+1} - Q_j)} \quad (9.3.11)$$

The computed values of the numerator (storage) and denominator (weighted discharges) are plotted for each time interval, with the numerator on the vertical axis and the denominator on the horizontal axis. This usually produces a graph in the form of a loop, as shown in Figure 9.3.2. The value of X that produces a loop closest to a single line is taken to be the correct value for the reach, and K , according to equation (9.3.11), is equal to the slope of the line. Since K is the time required for the incremental flood wave to traverse the reach, its value may also be estimated as the observed time of travel of peak flow through the reach.

EXAMPLE 9.3.1

The objective of this example is to determine K and X for the Muskingum routing method using the February 26 to March 4, 1929 data on the Tuscasawas River from Dover to Newcomerstown. This example is taken from the U.S. Army Corps of Engineers (1960) as used in Cudworth (1989). Columns 2 and 3 in Table 9.3.1 are the inflow and outflow hydrographs for the reach. The numerator and denominator of equation (9.3.11) were computed (for each time period) using four values of $X = 0, 0.1, 0.2$, and 0.3 . The accumulated numerators are in column 9 and the accumulated denominators (weighted discharges) are in columns 11, 13, 15, and 17. In Figure 9.3.2, the accumulated numerator (storages) from column (9) are plotted against the corresponding accumulated denominator (weighted discharges) for each of the four X values. According to Figure 9.3.2, the best fit (linear relationship) appears to be for $X = 0.2$, which has a resulting $K = 1.0$. To perform a routing, K should equal Δt , so that if $\Delta t = 0.5$ day, as in this case, the reach should be subdivided into two equal reaches ($N_{\text{steps}} = 2$) and the value of K should be 0.5 day for each reach.

Table 9.3.1 Determination of Coefficients K and X for the Muskingum Routing Method, Tuscarawas River, Muskingum Basin, Ohio Reach from Dover to Newcomerstown, February 26 to March 4, 1929

(1) Date $\Delta t = 0.5$ day	(2) In- flow ¹ , ft^3/s	Values of D and ΣD for Assumed Values of X					
		$X = 0$			$X = 0.1$		
		(3) Out- flow ² , ft^3/s	(4) $I_2 + I_1$, ft^3/s	(5) $O_2 + O_1$, ft^3/s	(6) $I_2 - I_1$, ft^3/s	(7) $O_2 - O_1$, ft^3/s	(8) ΣN
2-26-29 a.m.	2,200	2,000	16,700	9,000	12,300	5,000	5,000
	p.m.	14,500	7,000	42,900	18,700	13,900	4,700
2-27-29 a.m.	28,400	11,700	60,200	28,200	3,400	4,800	8,000
	p.m.	31,800	16,500	61,500	40,500	-2,100	7,500
2-28-29 a.m.	29,700	24,00	55,000	53,100	-4,400	5,100	500
	p.m.	25,300	29,100	45,700	57,500	-4,900	-700
3-01-29 a.m.	20,400	28,400	36,700	52,200	-4,100	-4,600	-3,900
	p.m.	16,300	23,800	28,900	43,200	-3,700	-4,400
3-02-29 a.m.	12,600	19,400	21,900	34,700	-3,300	-4,100	-3,200
	p.m.	9,300	15,300	16,000	26,500	-2,600	-4,100
3-03-29 a.m.	6,700	11,200	11,700	19,400	-1,700	-3,000	-1,900
	p.m.	5,000	8,200	9,100	14,600	-900	-1,800
3-04-29 a.m.	4,100	6,400	7,700	11,600	-500	-1,200	-1,000
	p.m.	3,600	5,200	6,000	9,800	-1,200	-600
3-05-29 a.m.	2,400	4,600	—	—	—	—	—
						200	—
						2,600	—
						2,400	—
						2,100	—
						—	1,900

¹Inflow to reach was adjusted to equal volume of outflow.

²Outflow is the hydrograph at Newcomerstown.

³Numerator, N , is $\Delta t/2$, column (4) – column (5).

⁴Denominator, D , is column (7) + X [column (6) – column (7)].

Note: From plotting of column (9) versus columns (11), (13), (15), and (17), the plot giving the best fit is considered to define K and X .

$$K = \frac{\text{Numerator, } N}{\text{Denominator, } D} = \frac{0.5\Delta t[(I_2 + I_1) - (O_2 + O_1)]}{X(I_2 - I_1) + (1 - X)(O_2 - O_1)}$$

Source: Cudworth (1989).

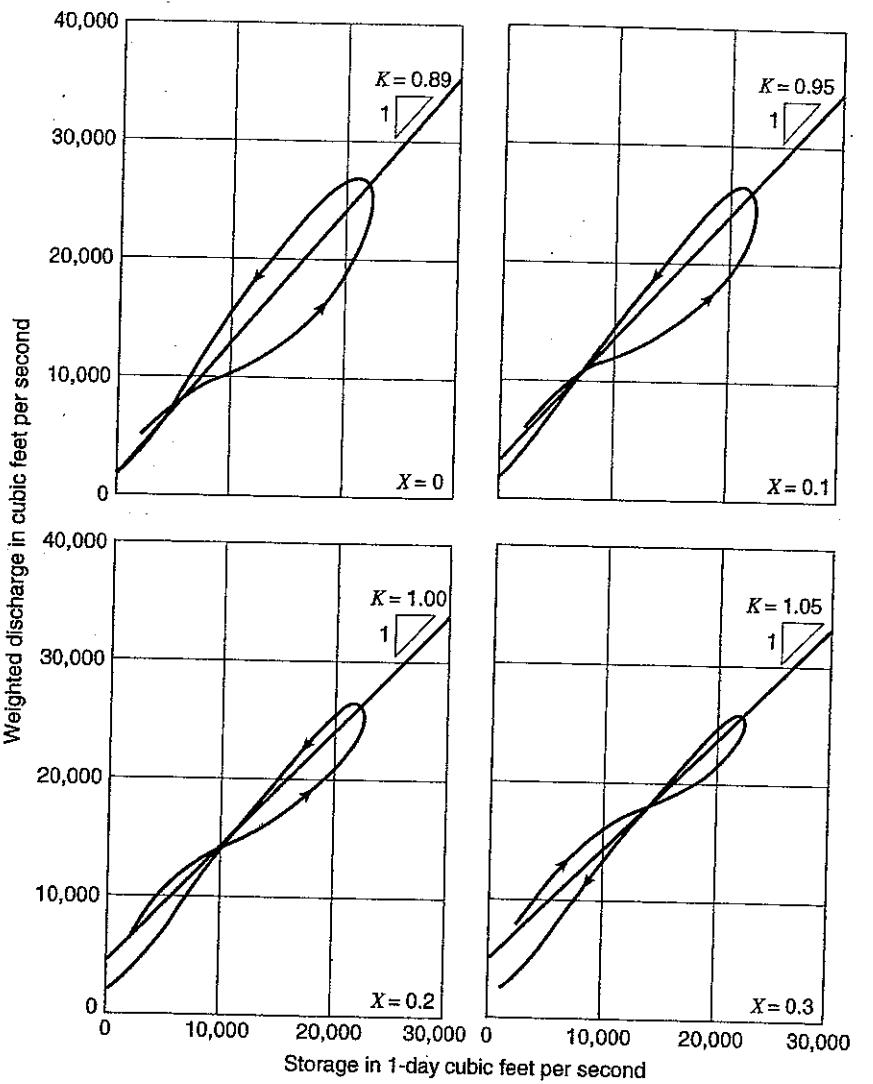


Figure 9.3.2 Typical valley storage curves.

EXAMPLE 9.3.2

Route the inflow hydrograph below using the Muskingum method; $\Delta t = 1$ hr, $X = 0.2$, $K = 0.7$ hrs.

Time (hrs)	0	1	2	3	4	5	6	7
Inflow (cfs)	0	800	2000	4200	5200	4400	3200	2500
Time (hrs)	8	9	10	11	12	13		
Inflow (cfs)	2000	1500	1000	700	400	0		

$$C_1 = \frac{1.0 - 2(0.7)(0.2)}{2(0.7)(1 - 0.2) + 1.0} = 0.3396$$

$$C_2 = \frac{1.0 + 2(0.7)(0.2)}{2(0.7)(1 - 0.2) + 1.0} = 0.6038$$

$$C_3 = \frac{2(0.7)(1 - 0.2) - 1.0}{2(0.7)(1 - 0.2) + 1.0} = 0.0566$$

(Adapted from Masch (1984).)

Check to see if $C_1 + C_2 + C_3 = 1$:

$$0.3396 + 0.6038 + 0.0566 = 1$$

Using equation (9.3.6) with $I_1 = 0$ cfs, $I_2 = 800$ cfs, and $Q_1 = 0$ cfs, compute Q_2 at $t = 1$ hr:

$$\begin{aligned} Q_2 &= C_1 I_2 + C_2 I_1 + C_3 Q_1 \\ &= (0.3396)(800) + 0.6038(0) + 0.0566(0) \\ &= 272 \text{ cfs (7.7 m}^3/\text{s}) \end{aligned}$$

Next compute Q_3 at $t = 2$ hr:

$$\begin{aligned} Q_3 &= C_1 I_3 + C_2 I_2 + C_3 Q_2 \\ &= (0.3396)(2000) + 0.6038(800) + 0.0566(272) \\ &= 1178 \text{ cfs (33 m}^3/\text{s}) \end{aligned}$$

The remaining computations result in

Time (hrs)	0	1	2	3	4	5	6	7
Q (cfs)	0	272	1178	2701	4455	4886	4020	3009

Time (hrs)	8	9	10	11	12	13	14	15
Q (cfs)	2359	1851	1350	918	610	276	16	1

9.4 HYDRAULIC (DISTRIBUTED) ROUTING

Distributed routing or *hydraulic routing*, also referred to as *unsteady flow routing*, is based upon the one-dimensional unsteady flow equations referred to as the *Saint-Venant equations*. The hydrologic river routing and the hydrologic reservoir routing procedures presented previously are lumped procedures and compute flow rate as a function of time alone at a downstream location. Hydraulic (distributed) flow routings allow computation of the flow rate and water surface elevation (or depth) as function of both space (location) and time. The *Saint-Venant equations* are presented in Table 9.4.1 in both the *velocity-depth (nonconservation) form* and the *discharge-area (conservation) form*.

The momentum equation contains terms for the physical processes that govern the flow momentum. These terms are: the *local acceleration term*, which describes the change in momentum due to the change in velocity over time, the *convective acceleration term*, which describes the change in momentum due to change in velocity along the channel, the *pressure force term*, proportional to the change in the water depth along the channel, the *gravity force term*, proportional to the bed slope S_0 , and the *friction force term*, proportional to the friction slope S_f . The local and convective acceleration terms represent the effect of inertial forces on the flow.

Alternative distributed flow routing models are produced by using the full continuity equation while eliminating some terms of the momentum equation (refer to Table 9.4.1). The simplest distributed model is the *kinematic wave model*, which neglects the local acceleration, convective acceleration, and pressure terms in the momentum equation; that is, it assumes that $S_0 = S_f$ and the friction and gravity forces balance each other. The *diffusion wave model* neglects the local and convective acceleration terms but incorporates the pressure term. The *dynamic wave model* considers all the acceleration and pressure terms in the momentum equation.

The momentum equation can also be written in forms that take into account whether the flow is steady or unsteady, and uniform or nonuniform, as illustrated in Table 9.4.1. In the continuity equation, $\partial A/\partial t = 0$ for a steady flow, and the lateral inflow q is zero for a uniform flow.

Table 9.4.1 Summary of the Saint-Venant Equations*

Continuity equation

$$\text{Conservation form} \quad \frac{\partial Q}{\partial x} + \frac{\partial A}{\partial t} = 0$$

$$\text{Nonconservation form} \quad V \frac{\partial y}{\partial x} + \frac{\partial V}{\partial x} + \frac{\partial y}{\partial t} = 0$$

Momentum equation

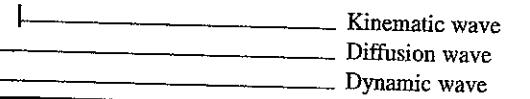
Conservation form

$$\frac{1}{A} \frac{\partial Q}{\partial t} + \frac{1}{A} \frac{\partial}{\partial x} \left(\frac{Q^2}{A} \right) + g \frac{\partial y}{\partial x} - g(S_0 - S_f) = 0$$

Local acceleration term	Convective acceleration term	Pressure force term	Gravity force term	Friction force term
-------------------------	------------------------------	---------------------	--------------------	---------------------

Nonconservation form (unit with element)

$$\frac{\partial V}{\partial t} + V \frac{\partial V}{\partial x} + g \frac{\partial y}{\partial x} - g(S_0 - S_f) = 0$$



*Neglecting lateral inflow, wind shear, and eddy losses, and assuming $\beta = 1$.

x = longitudinal distance along the channel or river, t = time, A = cross-sectional area of flow, h = water surface elevation, S_f = friction slope, S_0 = channel bottom slope, g = acceleration due to gravity, V = velocity of flow, and y = depth of flow.

9.4.1 Unsteady Flow Equations: Continuity Equation

The *continuity equation* for an unsteady variable-density flow through a control volume can be written as in equation (3.2.1):

$$0 = \frac{d}{dt} \int_{CV} \rho dV + \int_{CS} \rho V \cdot dA \quad (9.4.1)$$

Consider an elemental control volume of length dx in a channel. Figure 9.4.1 shows three views of the control volume: (a) an elevation view from the side, (b) a plan view from above, and (c) a channel cross-section. The inflow to the control volume is the sum of the flow Q entering the control volume at the upstream end of the channel and the lateral inflow q entering the control volume as a distributed flow along the side of the channel. The dimensions of q are those of flow per unit length of channel, so the rate of lateral inflow is qdx and the mass inflow rate is

$$\int_{\text{inlet}} \rho V \cdot dA = -\rho(Q + qdx) \quad (9.4.2)$$

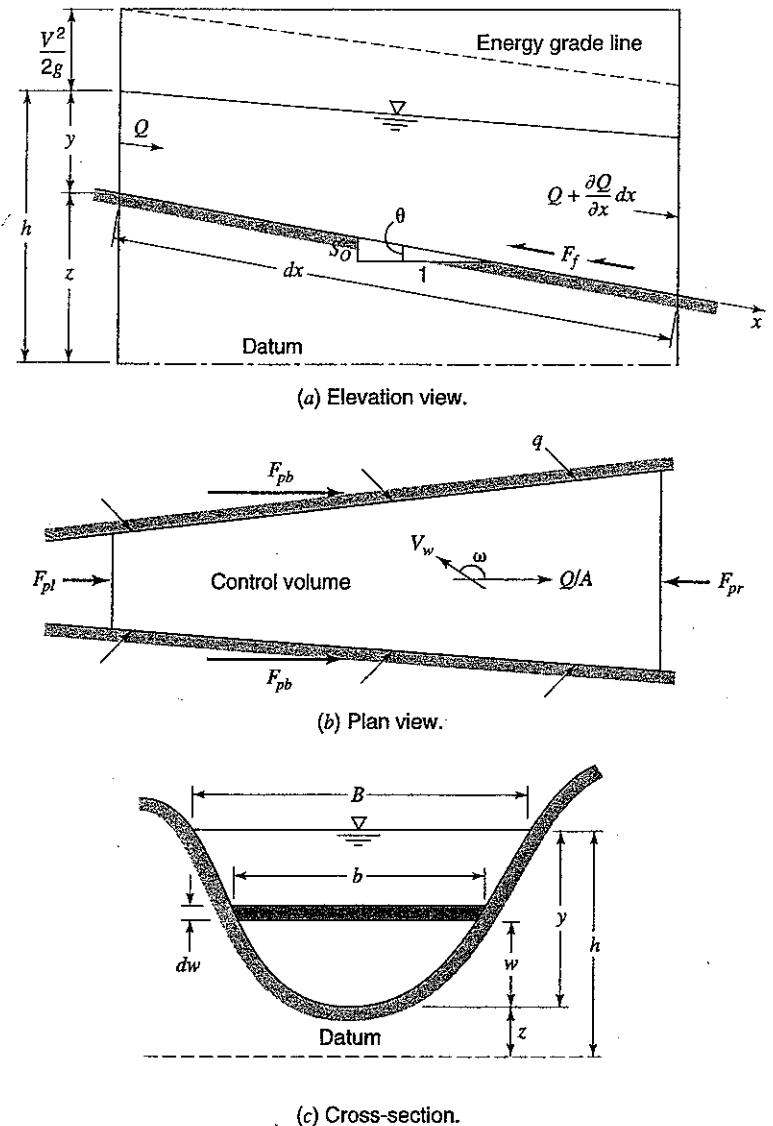


Figure 9.4.1 An elemental reach of channel for derivation of Saint-Venant equations.

This is negative because inflows are considered negative in the control volume approach (Reynolds transport theorem). The mass outflow from the control volume is

$$\int_{\text{outlet}} \rho V_s dA = \rho \left(Q + \frac{\partial Q}{\partial x} dx \right) \quad (9.4.3)$$

where $\partial Q/\partial x$ is the rate of change of channel flow with distance. The volume of the channel element is $A dx$, where A is the average cross-sectional area, so the rate of change of mass stored within the control volume is

$$\frac{d}{dt} \int_{\text{CV}} \rho dV = \frac{\partial(\rho A dx)}{\partial t} \quad (9.4.4)$$

where the partial derivative is used because the control volume is defined to be fixed in size (though the water level may vary within it). The net outflow of mass from the control volume is found by substituting equations (9.4.2)–(9.4.4) into (9.4.1):

$$\frac{\partial(\rho Adx)}{\partial t} - \rho(Q + qdx) + \rho \left(Q + \frac{\partial Q}{\partial x} dx \right) = 0 \quad (9.4.5)$$

Assuming the fluid density ρ is constant, equation (9.4.5) is simplified by dividing through by ρdx and rearranging to produce the *conservation form* of the continuity equation,

$$\frac{\partial Q}{\partial x} + \frac{\partial A}{\partial t} - q = 0 \quad (9.4.6)$$

which is applicable at a channel cross-section. This equation is valid for a *prismatic* or a *nonprismatic* channel; a prismatic channel is one in which the cross-sectional shape does not vary along the channel and the bed slope is constant.

For some methods of solving the Saint-Venant equations, the *nonconservation form* of the continuity equation is used, in which the average flow velocity V is a dependent variable, instead of Q . This form of the continuity equation can be derived for a unit width of flow within the channel, neglecting lateral inflow, as follows. For a unit width of flow, $A = y \times 1 = y$ and $Q = VA = Vy$. Substituting into equation (9.4.6) yields

$$\frac{\partial(Vy)}{\partial x} + \frac{\partial y}{\partial t} = 0 \quad (9.4.7)$$

or

$$V \frac{\partial y}{\partial x} + y \frac{\partial V}{\partial x} + \frac{\partial y}{\partial t} = 0 \quad (9.4.8)$$

9.4.2 Momentum Equation

Newton's second law is written in the form of Reynolds transport theorem as in equation (3.4.5):

$$\sum \mathbf{F} = \frac{d}{dt} \int_{CV} \mathbf{V} \rho dV + \sum_{CS} \mathbf{V} \rho \mathbf{V} \cdot d\mathbf{A} \quad (9.4.9)$$

This states that the sum of the forces applied is equal to the rate of change of momentum stored within the control volume plus the net outflow of momentum across the control surface. This equation, in the form $\sum F = 0$, was applied to steady uniform flow in an open channel in Chapter 5. Here, unsteady nonuniform flow is considered.

Forces. There are five forces acting on the control volume:

$$\sum \mathbf{F} = \mathbf{F}_g + \mathbf{F}_f + \mathbf{F}_e + \mathbf{F}_p \quad (9.4.10)$$

where F_g is the *gravity force* along the channel due to the weight of the water in the control volume, F_f is the *friction force* along the bottom and sides of the control volume, F_e is the *contraction/expansion force* produced by abrupt changes in the channel cross-section, and F_p is the *unbalanced pressure force* (see Figure 9.4.1). Each of these four forces is evaluated in the following paragraphs.

Gravity. The volume of fluid in the control volume is Adx and its weight is $\rho g Adx$. For a small angle of channel inclination θ , $S_0 \approx \sin \theta$ and the gravity force is given by

$$F_g = \rho g Adx \sin \theta \approx \rho g A S_0 dx \quad (9.4.11)$$

where the channel bottom slope S_0 equals $-\partial z / \partial x$.

Friction. Frictional forces created by the shear stress along the bottom and sides of the control volume are given by $-\tau_0 P dx$, where $\tau_0 = \gamma R S_f = \rho g (A/P) S_f$ is the bed shear stress and P is the wetted perimeter. Hence the friction force is written as

$$F_f = -\rho g A S_f dx \quad (9.4.12)$$

where the friction slope S_f is derived from resistance equations such as Manning's equation.

Contraction/expansion. Abrupt contractions or expansions of the channel cause energy losses through eddy motion. Such losses are similar to minor losses in a pipe system. The magnitude of eddy losses is related to the change in velocity head $V^2/2g = (Q/A)^2/2g$ through the length of channel causing the losses. The drag forces creating these eddy losses are given by

$$F_e = -\rho g A S_e dx \quad (9.4.13)$$

where S_e is the eddy loss slope

$$S_e = \frac{K_e}{2g} \frac{\partial(Q/A)^2}{\partial x} \quad (9.4.14)$$

in which K_e is the nondimensional expansion or contraction coefficient, negative for channel expansion (where $\partial(Q/A)^2/\partial x$ is negative) and positive for channel contractions.

Pressure. Referring to Figure 9.4.1, the unbalanced pressure force is the resultant of the hydrostatic force on the each side of the control volume. Chow et al. (1988) provide a detailed derivation of the pressure force F_p as simply

$$F_p = \rho g A \frac{\partial y}{\partial x} dx \quad (9.4.15)$$

The sum of the forces in equation (9.4.10) can be expressed, after substituting equations (9.4.11), (9.4.12), (9.4.13), and (9.4.15), as

$$\Sigma F = \rho A S_0 dx - \rho g A S_f dx - \rho g A S_e dx - \rho g A \frac{\partial y}{\partial x} dx \quad (9.4.16)$$

Momentum. The two momentum terms on the right-hand side of equation (9.4.9) represent the rate of change of storage of momentum in the control volume, and the net outflow of momentum across the control surface, respectively.

Net momentum outflow. The mass inflow rate to the control volume (equation (9.4.2)) is $-\rho(Q + qdx)$, representing both stream inflow and lateral inflow. The corresponding momentum is computed by multiplying the two mass inflow rates by their respective velocity and a *momentum correction factor* β :

$$\int_{inlet} \rho V \cdot dA = -\rho(\beta V Q + \beta v_x q dx) \quad (9.4.17)$$

where $-\rho\beta V Q$ is the momentum entering from the upstream end of the channel, and $-\rho\beta v_x q dx$ is the momentum entering the main channel with the lateral inflow, which has a velocity v_x in the x direction. The term β is known as the *momentum coefficient* or *Boussinesq coefficient*; it accounts for the nonuniform distribution of velocity at a channel cross-section in computing the momentum. The value of β is given by

$$\beta = \frac{1}{V^2 A} \int v^2 dA \quad (9.4.18)$$

where v is the velocity through a small element of area dA in the channel cross-section. The value of β ranges from 1.01 for straight prismatic channels to 1.33 for river valleys with floodplains (Chow, 1959; Henderson, 1966).

The momentum leaving the control volume is

$$\int_{\text{outlet}} \mathbf{V} \rho \mathbf{V} \cdot d\mathbf{A} = \rho \left[\beta V Q + \frac{\partial(\beta V Q)}{\partial x} dx \right] \quad (9.4.19)$$

The net outflow of momentum across the control surface is the sum of equations (9.4.17) and (9.4.19):

$$\begin{aligned} \int_{\text{CS}} \mathbf{V} \rho \mathbf{V} \cdot d\mathbf{A} &= -\rho(\beta V Q + \beta v_x q dx) + \rho \left[\beta V Q + \frac{\partial(\beta V Q)}{\partial x} dx \right] \\ &= -\rho \left[\beta v_x q - \frac{\partial(\beta V Q)}{\partial x} \right] dx \end{aligned} \quad (9.4.20)$$

Momentum storage. The time rate of change of momentum stored in the control volume is found by using the fact that the volume of the elemental channel is $A dx$, so its momentum is $\rho A dx V$, or $\rho Q dx$, and then

$$\frac{d}{dt} \int_{\text{CV}} \mathbf{V} \rho d\mathbf{V} = \rho \frac{\partial Q}{\partial t} dx \quad (9.4.21)$$

After substituting the force terms from equation (9.4.16) and the momentum terms from equations (9.4.20) and (9.4.21) into the momentum equation (9.4.9), it reads

$$\rho g A S_0 dx - \rho g A S_f dx - \rho g A S_e dx - \rho g A \frac{\partial y}{\partial x} dx = -\rho \left[\beta v_x q - \frac{\partial(\beta V Q)}{\partial x} \right] dx + \rho \frac{\partial Q}{\partial t} dx \quad (9.4.22)$$

Dividing through by ρdx , replacing V with Q/A , and rearranging produces the conservation form of the momentum equation:

$$\frac{\partial Q}{\partial t} + \frac{\partial(\beta Q^2/A)}{\partial x} + g A \left(\frac{\partial y}{\partial x} - S_0 + S_f + S_e \right) - \beta q v_x = 0 \quad (9.4.23)$$

The depth y in equation (9.4.23) can be replaced by the water surface elevation h , using

$$h = y + z \quad (9.4.24)$$

where z is the elevation of the channel bottom above a datum such as mean sea level. The derivative of equation (9.4.24) with respect to the longitudinal distance x along the channel is

$$\frac{\partial h}{\partial x} = \frac{\partial y}{\partial x} + \frac{\partial z}{\partial x} \quad (9.4.25)$$

but $\partial z / \partial x = -S_0$, so

$$\frac{\partial h}{\partial x} = \frac{\partial y}{\partial x} - S_0 \quad (9.4.26)$$

The momentum equation can now be expressed in terms of h by using equation (9.4.26) in (9.4.23):

$$\frac{\partial Q}{\partial t} + \frac{\partial(\beta Q^2/A)}{\partial x} + g A \left(\frac{\partial h}{\partial x} + S_f + S_e \right) - \beta q v_x = 0 \quad (9.4.27)$$

The Saint-Venant equations, (9.4.6) for continuity and (9.4.27) for momentum, are the governing equations for one-dimensional, unsteady flow in an open channel. The use of the terms S_f and S_e in equation (9.4.27), which represent the rate of energy loss as the flow passes through the channel, illustrates the close relationship between energy and momentum considerations in describing

the flow. Strelkoff (1969) showed that the momentum equation for the Saint-Venant equations can also be derived from energy principles, rather than by using Newton's second law as presented here.

The nonconservation form of the momentum equation can be derived in a similar manner to the nonconservation form of the continuity equation. Neglecting eddy losses, wind shear effect, and lateral inflow, the nonconservation form of the momentum equation for a unit width in the flow is

$$\frac{\partial V}{\partial t} + V \frac{\partial V}{\partial x} + g \left(\frac{\partial y}{\partial x} - S_0 + S_f \right) = 0 \quad (9.4.28)$$

9.5 KINEMATIC WAVE MODEL FOR CHANNELS

In Section 8.9, a kinematic wave overland flow runoff model was presented. This is an implicit nonlinear kinematic model that is used in the KINEROS model. This section presents a general discussion of the kinematic wave followed by brief description of the very simplest linear models, such as those found in the U.S. Army Corps of Engineers HEC-1, and the more complicated models such as the KINEROS model (Woolhiser et al., 1990).

Kinematic waves govern flow when inertial and pressure forces are not important. Dynamic waves govern flow when these forces are important, as in the movement of a large flood wave in a wide river. In a kinematic wave, the gravity and friction forces are balanced, so the flow does not accelerate appreciably.

For a kinematic wave, the energy grade line is parallel to the channel bottom and the flow is steady and uniform ($S_0 = S_f$) within the differential length, while for a dynamic wave the energy grade line and water surface elevation are not parallel to the bed, even within a differential element.

9.5.1 Kinematic Wave Equations

A *wave* is a variation in a flow, such as a change in flow rate or water surface elevation, and the *wave celerity* is the velocity with which this variation travels along the channel. The celerity depends on the type of wave being considered and may be quite different from the water velocity. For a kinematic wave the acceleration and pressure terms in the momentum equation are negligible, so the wave motion is described principally by the equation of continuity. The name kinematic is thus applicable, as *kinematics* refers to the study of motion exclusive of the influence of mass and force; in *dynamics* these quantities are included.

The kinematic wave model is defined by the following equations.

Continuity:

$$\frac{\partial Q}{\partial x} + \frac{\partial A}{\partial t} = q(x, t) \quad (9.5.1)$$

Momentum:

$$S_0 = S_f \quad (9.5.2)$$

where $q(x, t)$ is the net lateral inflow per unit length of channel.

The momentum equation can also be expressed in the form

$$A = \alpha Q^B \quad (9.5.3)$$

For example, Manning's equation written with $S_0 = S_f$ and $R = A/P$ is

$$Q = \frac{1.49 S_0^{1/2}}{n P^{2/3}} A^{5/3} \quad (9.5.4)$$

which can be solved for A as

$$A = \left(\frac{n P^{2/3}}{1.49 \sqrt{S_0}} \right)^{3/5} Q^{3/5} \quad (9.5.5)$$

so $\alpha = [n P^{2/3} / (1.49 \sqrt{S_0})]^{0.6}$ and $\beta = 0.6$ in this case.

Equation (9.5.1) contains two dependent variables, A and Q , but A can be eliminated by differentiating equation (9.5.3):

$$\frac{\partial A}{\partial t} = \alpha \beta Q^{\beta-1} \left(\frac{\partial Q}{\partial t} \right) \quad (9.5.6)$$

and substituting for $\partial A / \partial t$ in equation (9.5.1) to give

$$\frac{\partial Q}{\partial x} + \alpha \beta Q^{\beta-1} \left(\frac{\partial Q}{\partial t} \right) = q \quad (9.5.7)$$

Alternatively, the momentum equation could be expressed as

$$Q = a A^B \quad (9.5.8)$$

where a and B are defined using Manning's equation. Using

$$\frac{\partial Q}{\partial x} = \frac{dQ}{dA} \frac{\partial A}{\partial x} \quad (9.5.9)$$

the governing equation is

$$\frac{\partial A}{\partial t} + \frac{dQ}{dA} \frac{\partial A}{\partial x} = q \quad (9.5.10)$$

where dQ/dA is determined by differentiating equation (9.5.8):

$$\frac{dQ}{dA} = a B A^{B-1} \quad (9.5.11)$$

and substituting in equation (9.5.10):

$$\frac{\partial A}{\partial t} + a B A^{B-1} \frac{\partial A}{\partial x} = q \quad (9.5.12)$$

The kinematic wave equation (9.5.7) has Q as the dependent variable and the kinematic wave equation (9.5.12) has A as the dependent variable. First consider equation (9.5.7), by taking the logarithm of (9.5.3):

$$\ln A = \ln \alpha + \beta \ln Q \quad (9.5.13)$$

and differentiating

$$\frac{dQ}{Q} = \frac{1}{\beta} \left(\frac{dA}{A} \right) \quad (9.5.14)$$

This defines the relationship between relative errors dA/A and dQ/Q . For Manning's equation $\beta < 1$, so that the discharge estimation error would be magnified by the ratio $1/\beta$ if A were the dependent variable instead of Q .

Next consider equation (9.5.12); by taking the logarithm of (9.5.8):

$$\ln Q = \ln a + B \ln A \quad (9.5.15)$$

$$\frac{dA}{A} = \frac{1}{B} \left(\frac{dQ}{Q} \right)$$

or

$$\frac{dQ}{Q} = B \left(\frac{dA}{A} \right) \quad (9.5.16)$$

In this case $B > 1$, so that the discharge estimation error would be decreased by B if A were the dependent variable instead of Q . In summary, if we use equation (9.5.3) as the form of the momentum equation, then Q is the dependent variable with equation (9.5.7) being the governing equation; if we use equation (9.5.8) as the form of the momentum equation, then A is the dependent variable with equation (9.5.12) being the governing equation.

9.5.2 U.S. Army Corps of Engineers HEC-1 Kinematic Wave Model for Overland Flow and Channel Routing

The HEC-1 computer program actually has two forms of the kinematic wave. The first is based upon equation (9.5.12) where an explicit finite difference form is used (refer to Figures 9.5.1 and 8.9.2):

$$\frac{\partial A}{\partial t} = \frac{A_{i+1}^{j+1} - A_i^j}{\Delta t} \quad (9.5.17)$$

$$\frac{\partial A}{\partial x} = \frac{A_{i+1}^j - A_i^j}{\Delta x} \quad (9.5.18)$$

and

$$A = \frac{A_{i+1}^j + A_i^j}{2} \quad (9.5.19)$$

$$q = \frac{q_{i+1}^{j+1} + q_{i+1}^j}{2} \quad (9.5.20)$$

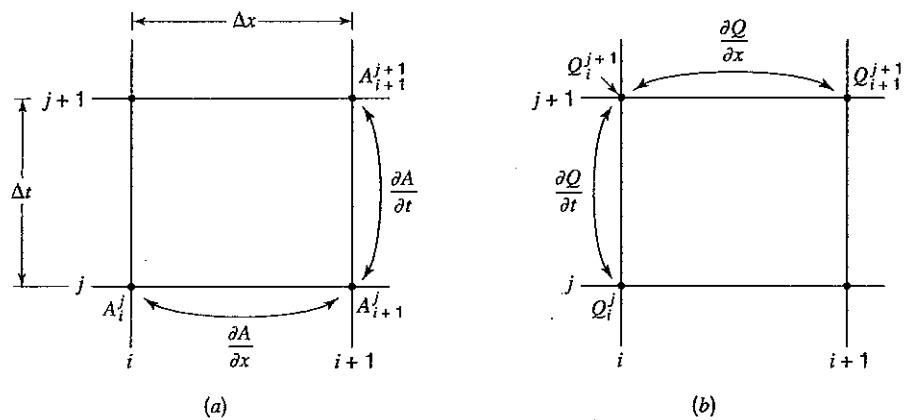


Figure 9.5.1 Finite difference forms. (a) HEC-1 "standard form;" (b) HEC-1 "conservation form."

Substituting these finite-difference approximations into equation (9.5.12) gives

$$\frac{1}{\Delta t} (A_{i+1}^{j+1} - A_i^j) + aB \left[\frac{A_{i+1}^j + A_i^j}{2} \right]^{B-1} \left[\frac{A_{i+1}^j - A_i^j}{\Delta x} \right] = \frac{q_{i+1}^{j+1} + q_i^j}{2} \quad (9.5.21)$$

The only unknown in equation (9.5.21) is A_{i+1}^{j+1} , so

$$A_{i+1}^{j+1} = A_i^j - aB \left(\frac{\Delta t}{\Delta x} \right) \left[\frac{A_{i+1}^j + A_i^j}{2} \right]^{B-1} (A_{i+1}^j - A_i^j) + \left(q_{i+1}^{j+1} + q_i^j \right) \frac{\Delta t}{2} \quad (9.5.22)$$

After computing A_{i+1}^{j+1} at each grid along a time line going from upstream to downstream (see Figure 8.9.2), compute the flow using equation (9.5.8):

$$Q_{i+1}^{j+1} = a (A_{i+1}^{j+1})^B \quad (9.5.23)$$

The HEC-1 model uses the above kinematic wave model as long as a stability factor $R < 1$ (Alley and Smith, 1987), defined by

$$R = \frac{a}{q \Delta x} \left[(q \Delta t + A_i^j)^B - (A_i^j)^B \right] \text{ for } q > 0 \quad (9.5.24a)$$

$$R = aB (A_i^j)^{B-1} \frac{\Delta t}{\Delta x} \text{ for } q = 0 \quad (9.5.24b)$$

Otherwise HEC-1 uses the form of equation (9.5.1), where (see Figure 9.5.1)

$$\frac{\partial Q}{\partial x} = \frac{Q_{i+1}^{j+1} - Q_i^{j+1}}{\Delta x} \quad (9.5.25)$$

$$\frac{\partial A}{\partial t} = \frac{A_i^{j+1} - A_i^j}{\Delta t} \quad (9.5.26)$$

so

$$\frac{Q_{i+1}^{j+1} - Q_i^{j+1}}{\Delta x} + \frac{A_i^{j+1} - A_i^j}{\Delta t} = q \quad (9.5.27)$$

Solving for the only unknown Q_{i+1}^{j+1} yields

$$Q_{i+1}^{j+1} = Q_i^{j+1} + q \Delta x - \frac{\Delta x}{\Delta t} (A_i^{j+1} - A_i^j) \quad (9.5.28)$$

Then solve for A_{i+1}^{j+1} using equation (9.5.23):

$$A_{i+1}^{j+1} = \left(\frac{1}{a} Q_{i+1}^{j+1} \right)^{1/B} \quad (9.5.29)$$

The *initial condition* (values of A and Q at time 0 along the grid, referring to Figure 8.9.2) are computed assuming uniform flow or nonuniform flow for an initial discharge. The *upstream boundary* is the inflow hydrograph from which Q is obtained.

The kinematic wave schemes used in the HEC-1 model are very simplified. Chow et al. (1988) presented both linear and nonlinear kinematic wave schemes based upon the equation (9.5.7) formulation. An example of a more desirable kinematic wave formulation is that by Woolhiser et al. (1990) presented in the next subsection.

9.5.3 KINEROS Channel Flow Routing Model

The KINEROS channel routing model uses the equation (9.5.10) form of the kinematic wave equation (Woolhiser et al., 1990):

$$\frac{\partial A}{\partial t} + \frac{dQ}{dA} \frac{\partial A}{\partial x} = q(x, t) \quad (9.5.10)$$

where $q(x, t)$ is the net lateral inflow per unit length of channel. The derivatives are approximated using an implicit scheme in which the spatial and temporal derivatives are, respectively,

$$\frac{\partial A}{\partial x} = \theta \frac{A_{i+1}^{j+1} - A_i^{j+1}}{\Delta x} + (1 - \theta) \frac{A_{i+1}^j - A_i^j}{\Delta x} \quad (9.5.30)$$

$$\frac{dQ}{dA} \frac{\partial A}{\partial x} = \theta \left(\frac{dQ}{dA} \right)^{j+1} \left(\frac{A_{i+1}^{j+1} - A_i^{j+1}}{\Delta x} \right) + (1 - \theta) \left(\frac{dQ}{dA} \right)^{j+1} \left(\frac{A_{i+1}^j - A_i^j}{\Delta x} \right) \quad (9.5.31)$$

and

$$\frac{\partial A}{\partial t} = \frac{1}{2} \left[\frac{A_i^{j+1} - A_i^j}{\Delta t} + \frac{A_{i+1}^{j+1} - A_{i+1}^j}{\Delta t} \right] \quad (9.5.32)$$

or

$$\frac{\partial A}{\partial t} = \frac{A_i^{j+1} + A_{i+1}^{j+1} - A_i^j - A_{i+1}^j}{2\Delta t} \quad (9.5.33)$$

Substituting equations (9.5.31) and (9.5.33) into (9.5.10), we have

$$\begin{aligned} & \frac{A_{i+1}^{j+1} - A_i^j + A_{i+1}^j - A_i^j}{2\Delta t} + \left\{ \theta \left[\left(\frac{dQ}{dA} \right)^{j+1} \left(\frac{A_{i+1}^{j+1} - A_i^{j+1}}{\Delta x} \right) \right] + (1 - \theta) \left[\left(\frac{dQ}{dA} \right)^{j+1} \left(\frac{A_{i+1}^j - A_i^j}{\Delta x} \right) \right] \right\} \\ &= \frac{1}{2} (q_{i+1}^{j+1} + q_i^{j+1} + q_{i+1}^j + q_i^j) \end{aligned} \quad (9.5.34)$$

The only unknown in this equation is A_{i+1}^{j+1} , which must be solved for numerically by use of an iterative scheme such as the Newton-Raphson method (see Appendix A).

Woolhiser et al. (1990) use the following relationship between channel discharge and cross-sectional area, which embodies the kinematic wave assumption:

$$Q = \alpha R^{m-1} A \quad (9.5.35)$$

where R is the hydraulic radius and $\alpha = 1.49S^{1/2}/n$ and $m = 5/3$ for Manning's equation.

9.5.4 Kinematic Wave Celerity

Kinematic waves result from changes in Q . An increment in flow dQ can be written as

$$dQ = \frac{\partial Q}{\partial x} dx + \frac{\partial Q}{\partial t} dt \quad (9.5.36)$$

Dividing through by dx and rearranging produces:

$$\frac{\partial Q}{\partial x} + \frac{dt}{dx} \frac{\partial Q}{\partial t} = \frac{dQ}{dx} \quad (9.5.37)$$

Equations (9.5.7) and (9.5.37) are identical if

$$\frac{dQ}{dx} = q \quad (9.5.38)$$

and

$$\frac{dx}{dt} = \frac{1}{\alpha\beta Q^{\beta-1}} \quad (9.5.39)$$

Differentiating equation (9.5.3) and rearranging gives

$$\frac{dQ}{dA} = \frac{1}{\alpha\beta Q^{\beta-1}} \quad (9.5.40)$$

and by comparing equations (9.5.38) and (9.5.40), it can be seen that

$$\frac{dx}{dt} = \frac{dQ}{dA} \quad (9.5.41)$$

or

$$c_k = \frac{dx}{dt} = \frac{dQ}{dA} \quad (9.5.42)$$

where c_k is the kinematic wave celerity. This implies that an observer moving at a velocity $dx/dt = c_k$ with the flow would see the flow rate increasing at a rate of $dQ/dx = q$. If $q = 0$ the observer would see a constant discharge. Equations (9.5.38) and (9.5.42) are the *characteristic equations* for a kinematic wave, two ordinary differential equations that are mathematically equivalent to the governing continuity and momentum equations.

The kinematic wave celerity can also be expressed in terms of the depth y as

$$c_k = \frac{1}{B} \frac{dQ}{dy} \quad (9.5.43)$$

where $dA = Bdy$.

Both kinematic and dynamic wave motion are present in natural flood waves. In many cases the channel slope dominates in the momentum equation; therefore, most of a flood wave moves as a kinematic wave. Lighthill and Whitham (1955) proved that the velocity of the main part of a natural flood wave approximates that of a kinematic wave. If the other momentum terms ($\partial V/\partial t$, $V(\partial V/\partial x)$ and $(1/g)\partial y/\partial x$) are not negligible, then a dynamic wave front exists that can propagate both upstream and downstream from the main body of the flood wave.

9.6 MUSKINGUM-CUNGE MODEL

Cunge (1969) proposed a variation of the kinematic wave method based upon the Muskingum method (see Chapter 8). With the grid shown in Figure 9.6.1, the unknown discharge Q_{i+1}^{j+1} can be expressed using the Muskingum equation ($Q_{j+1} = C_1 I_{j+1} + C_2 I_j + C_3 Q_j$):

$$Q_{i+1}^{j+1} = C_1 Q_i^{j+1} + C_2 Q_i^j + C_3 Q_{i+1}^j \quad (9.6.1)$$

where $Q_{i+1}^{j+1} = Q_{j+1}$; $Q_i^{j+1} = I_{j+1}$; $Q_i^j = I_j$; and $Q_{i+1}^j = Q_j$. The Muskingum coefficients are

$$C_1 = \frac{\Delta t - 2KX}{2K(1-X) + \Delta t} \quad (9.6.2)$$

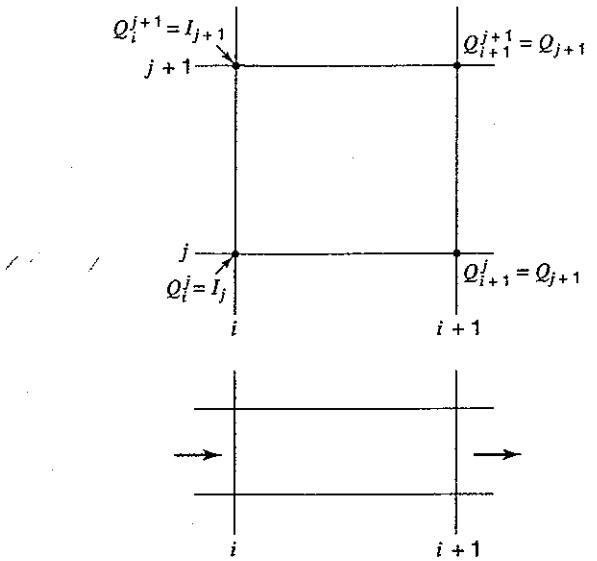


Figure 9.6.1 Finite-difference grid for Muskingum-Cunge method.

$$C_2 = \frac{\Delta t + 2KX}{2K(1-X) + \Delta t} \quad (9.6.3)$$

$$C_3 = \frac{2K(1-X) - \Delta t}{2K(1-X) + \Delta t} \quad (9.6.4)$$

Cunge (1969) showed that when K and Δt are considered constant, equation (9.6.1) is an approximate solution of the kinematic wave. He further demonstrated that (9.6.1) can be considered an approximation of a modified diffusion equation if

$$K = \frac{\Delta x}{c_k} = \frac{\Delta x}{dQ/dA} \quad (9.6.5)$$

and

$$X = \frac{1}{2} \left(1 - \frac{Q}{Bc_k S_0 \Delta x} \right) \quad (9.6.6)$$

where c_k is the celerity corresponding to Q and B , and B is the width of the water surface. The value of $\Delta x/(dQ/dA)$ in equation (9.6.5) represents the time propagation of a given discharge along a channel reach of length Δx . Numerical stability requires $0 \leq X \leq 1/2$. The solution procedure is basically the same as the kinematic wave.

9.7 IMPLICIT DYNAMIC WAVE MODEL

The conservation form of the Saint-Venant equations is used because this form provides the versatility required to simulate a wide range of flows from gradual long-duration flood waves in rivers to abrupt waves similar to those caused by a dam failure. The equations are developed from equations (9.4.6) and (9.4.25) as follows.

Weighted four-point finite-difference approximations given by equations (9.7.1)–(9.7.3) are used for dynamic routing with the Saint-Venant equations. The spatial derivatives $\partial Q/\partial x$ and $\partial h/\partial x$ are estimated between adjacent time lines:

$$\frac{\partial Q}{\partial x} = \theta \frac{Q_{i+1}^{j+1} - Q_i^{j+1}}{\Delta x_i} + (1-\theta) \frac{Q_{i+1}^j - Q_i^j}{\Delta x_i} \quad (9.7.1)$$

$$\frac{\partial h}{\partial x} = \theta \frac{h_{i+1}^{j+1} - h_i^{j+1}}{\Delta x_i} + (1-\theta) \frac{h_{i+1}^j - h_i^j}{\Delta x_i} \quad (9.7.2)$$

and the time derivatives are:

$$\frac{\partial(A+A_0)}{\partial t} = \frac{(A+A_0)_i^{j+1} + (A+A_0)_{i+1}^{j+1} - (A+A_0)_i^j - (A+A_0)_{i+1}^j}{2\Delta t_j} \quad (9.7.3)$$

$$\frac{\partial Q}{\partial t} = \frac{Q_i^{j+1} + Q_{i+1}^{j+1} - Q_i^j - Q_{i+1}^j}{2\Delta t_j} \quad (9.7.4)$$

The nonderivative terms, such as q and A , are estimated between adjacent time lines, using:

$$q = \theta \frac{q_i^{j+1} + q_{i+1}^{j+1}}{2} + (1-\theta) \frac{q_i^j + q_{i+1}^j}{2} = \bar{q}_i^{j+1} + (1-\theta)\bar{q}_i^j \quad (9.7.5)$$

$$A = \theta \left[\frac{A_i^{j+1} + A_{i+1}^{j+1}}{2} \right] + (1-\theta) \left[\frac{A_i^j + A_{i+1}^j}{2} \right] = \bar{A}_i^{j+1} + (1-\theta)\bar{A}_i^j \quad (9.7.6)$$

where \bar{q}_i and \bar{A}_i indicate the lateral flow and cross-sectional area averaged over the reach Δx_i .

The finite-difference form of the continuity equation is produced by substituting equations (9.7.1), (9.7.3), and (9.7.5) into (9.4.6):

$$\begin{aligned} & \theta \left(\frac{Q_{i+1}^{j+1} - Q_i^{j+1}}{\Delta x_i} - \bar{q}_i^{j+1} \right) + (1-\theta) \left(\frac{Q_{i+1}^j - Q_i^j}{\Delta x_i} - \bar{q}_i^j \right) \\ & + \frac{(A+A_0)_i^{j+1} + (A+A_0)_{i+1}^{j+1} - (A+A_0)_i^j - (A+A_0)_{i+1}^j}{2\Delta t_j} = 0 \end{aligned} \quad (9.7.7)$$

Similarly, the momentum equation (9.4.27) is written in finite-difference form as:

$$\begin{aligned} & \frac{Q_i^{j+1} + Q_{i+1}^{j+1} - Q_i^j - Q_{i+1}^j}{2\Delta t_j} \\ & + \theta \left[\frac{(\beta Q^2/A)_i^{j+1} - (\beta Q^2/A)_{i+1}^{j+1}}{\Delta x_i} + g\bar{A}_i^{j+1} \left(\frac{h_{i+1}^{j+1} - h_i^{j+1}}{\Delta x_i} + (\bar{S}_f)_i^{j+1} + (\bar{S}_e)_i^{j+1} \right) - (\bar{\beta} q v_x)_i^{j+1} \right] \\ & + (1-\theta) \left[\frac{(\beta Q^2/A)_{i+1}^j - (\beta Q^2/A)_i^j}{\Delta x_i} + g\bar{A}_i^j \left(\frac{h_{i+1}^j - h_i^j}{\Delta x_i} + (\bar{S}_f)_i^j + (\bar{S}_e)_i^j \right) - (\bar{\beta} q v_x)_i^j \right] = 0 \end{aligned} \quad (9.7.8)$$

The four-point finite-difference form of the continuity equation can be further modified by multiplying equation (9.7.7) by Δx_i to obtain

$$\begin{aligned} & \theta(Q_{i+1}^{j+1} - Q_i^{j+1} - \bar{q}_i^{j+1} \Delta x_i) + (1-\theta)(Q_{i+1}^j - Q_i^j - \bar{q}_i^j \Delta x_i) \\ & + \frac{\Delta x_i}{2\Delta t_j} [(A+A_0)_i^{j+1} + (A+A_0)_{i+1}^{j+1} - (A+A_0)_i^j - (A+A_0)_{i+1}^j] = 0 \end{aligned} \quad (9.7.9)$$

Similarly, the momentum equation can be modified by multiplying by Δx_i to obtain

$$\begin{aligned}
 & \frac{\Delta x_i}{2\Delta t_j} (Q_i^{j+1} + Q_{i+1}^{j+1} - Q_i^j - Q_{i+1}^j) \\
 & + \theta \left\{ \left(\frac{\beta Q^2}{A} \right)_{i+1}^{j+1} - \left(\frac{\beta Q^2}{A} \right)_i^{j+1} + g \bar{A}_i^{j+1} \left[h_{i+1}^{j+1} - h_i^{j+1} + (\bar{S}_f)_i^{j+1} \Delta x_i + (\bar{S}_e)_i^{j+1} \Delta x_i \right] - (\bar{\beta} q v_x)_i^{j+1} \Delta x_i \right\} \\
 & + (1-\theta) \left\{ \left(\frac{\beta Q^2}{A} \right)_{i+1}^j - \left(\frac{\beta Q^2}{A} \right)_i^j + g \bar{A}_i^j \left[h_{i+1}^j - h_i^j + (\bar{S}_f)_i^j \Delta x_i + (\bar{S}_e)_i^j \Delta x_i \right] - (\bar{\beta} q v_x)_i^j \Delta x_i \right\} = 0
 \end{aligned} \tag{9.7.10}$$

where the average values (marked with an overbar) over a reach are defined as

$$\bar{\beta}_i = \frac{\beta_i + \beta_{i+1}}{2} \tag{9.7.11}$$

$$\bar{A}_i = \frac{A_i + A_{i+1}}{2} \tag{9.7.12}$$

$$\bar{B}_i = \frac{B_i + B_{i+1}}{2} \tag{9.7.13}$$

$$\bar{Q}_i = \frac{Q_i + Q_{i+1}}{2} \tag{9.7.14}$$

Also,

$$\bar{R}_i = \bar{A}_i / \bar{B}_i \tag{9.7.15}$$

for use in Manning's equation. Manning's equation may be solved for S_f and written in the form shown below, where the term $|Q|Q$ has magnitude Q^2 and sign positive or negative depending on whether the flow is downstream or upstream, respectively:

$$(\bar{S}_f)_i = \frac{\bar{n}_i^2 |\bar{Q}_i| \bar{Q}_i}{2.208 \bar{A}_i^2 \bar{R}_i^{4/3}} \tag{9.7.16}$$

The minor headlosses arising from contraction and expansion of the channel are proportional to the difference between the squares of the downstream and upstream velocities, with a contraction/expansion loss coefficient K_e :

$$(\bar{S}_e)_i = \frac{(K_e)_i}{2g \Delta x_i} \left[\left(\frac{Q}{A} \right)_{i+1}^2 - \left(\frac{Q}{A} \right)_i^2 \right] \tag{9.7.17}$$

The terms having superscript j in equations (9.7.9) and (9.7.10) are known either from initial conditions or from a solution of the Saint-Venant equations for a previous time line. The terms g , Δx_i , β_p , K_e , C_w , and V_w are known and must be specified independently of the solution. The unknown terms are Q_i^{j+1} , Q_{i+1}^{j+1} , h_i^{j+1} , A_i^{j+1} , $A_{i+1}^{j+1} B_i^{j+1}$, and B_{i+1}^{j+1} . However, all the terms can be

expressed as functions of the unknowns Q_i^{j+1} , Q_{i+1}^{j+1} , h_i^{j+1} , and h_{i+1}^{j+1} , so there are actually four unknowns. The unknowns are raised to powers other than unity, so equations (9.7.9) and (9.7.10) are nonlinear equations.

The continuity and momentum equations are considered at each of the $N-1$ rectangular grids shown in Figure 9.7.1, between the upstream boundary at $i = 1$ and the downstream boundary at

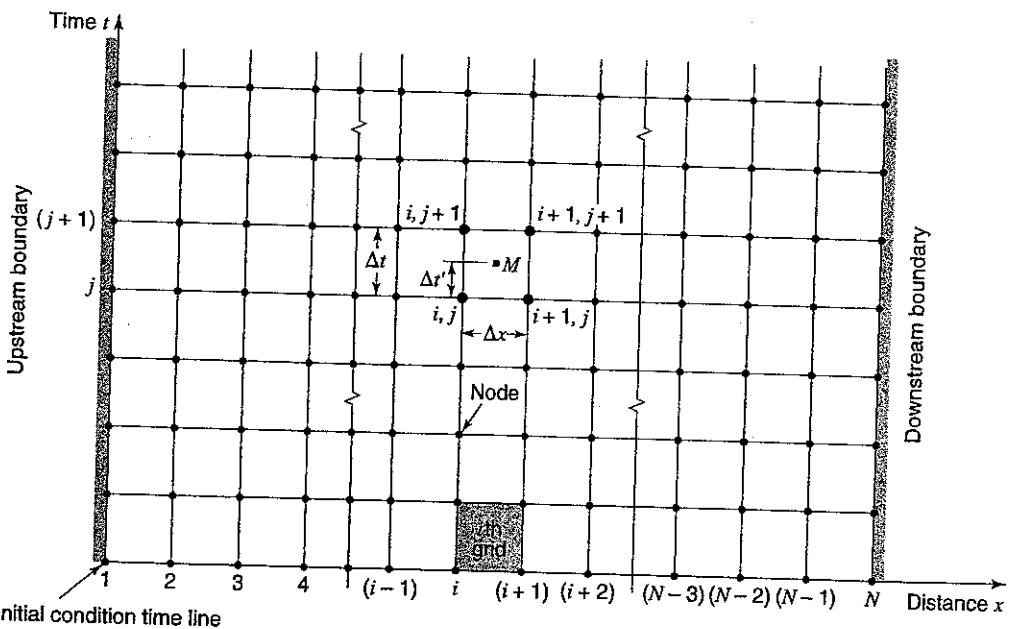


Figure 9.7.1 The x - t solution plane. The finite-difference forms of the Saint-Venant equations are solved at a discrete number of points (values of the independent variables x and t) arranged to form the rectangular grid shown. Lines parallel to the time axis represent locations along the channel, and those parallel to the distance axis represent times (from Fread (1974)).

$i = N$. This yields $2N-2$ equations. There are two unknowns at each of the N grid points (Q and h), so there are $2N$ unknowns in all. The two additional equations required to complete the solution are supplied by the upstream and downstream boundary conditions. The upstream boundary condition is usually specified as a known inflow hydrograph, while the downstream boundary condition can be specified as a known stage hydrograph, a known discharge hydrograph, or a known relationship between stage and discharge, such as a rating curve. The U.S. National Weather Service FLDWAV model (hsp.nws.noaa.gov/oh/hrl/rvmec) uses the above to describe implicit dynamic wave model formulation.

PROBLEMS

9.1.1 The storage-outflow characteristics for a reservoir are given below. Determine the storage-outflow function $2S/\Delta t + Q$ versus Q for each of the tabulated values using $\Delta t = 1.0$ hr. Plot a graph of the storage-outflow function.

Storage (106 m ³)	70	80	85	100	115
Outflow (m ³)	0	50	150	350	700

9.2.1 Route the inflow hydrograph given below through the reservoir with the storage-outflow characteristics given in problem 9.1.1 using the level pool method. Assume the reservoir has an initial storage of 70×10^6 m³.

Time (h)	0	1	2	3	4	5	6	7	8
Inflow (m ³ /s)	0	40	60	150	200	300	250	200	180

Time (h)	9	10	11	12	13	14	15	16
Inflow (m ³ /s)	220	320	400	280	190	150	50	0

9.2.2 Rework problem 9.2.1 assuming the reservoir storage is initially 80×10^6 m³.

9.2.3 Write a computer program to solve problems 9.2.1 and 9.2.2.

9.2.4 Rework example 9.1.1 using a 1.5-acre detention basin.

9.2.5 Rework example 9.1.1 using a triangular inflow hydrograph that increases linearly from zero to a peak of 90 cfs at 120 min and then decreases linearly to a zero discharge at 240 min. Use a 30-min routing interval.

9.2.6 Rework example 9.2.2 using $\Delta t = 2$ hrs.

9.2.7 Rework example 9.2.2 assuming $X = 0.3$ hrs.

9.3.1 Rework example 9.2.2 assuming $K = 1.4$ hr.

9.3.2 Calculate the Muskingum routing K and number of routing steps for a 1.25-mi long channel. The average cross-section dimensions for the channel are a base width of 25 ft and an average depth of 2.0 ft. Assume the channel is rectangular and has Manning's n 0.04 and a slope of 0.009 ft/ft.

9.3.3 Route the following upstream inflow hydrograph through a downstream flood control channel reach using the Muskingum method. The channel reach has a $K = 2.5$ hr and $X = 0.2$. Use a routing interval of 1 hr.

Time (h)	1	2	3	4	5	6	7
Inflow (cfs)	90	140	208	320	440	550	640
Time (h)	8	9	10	11	12	13	14
Inflow (cfs)	680	690	630	570	470	390	
Time (h)	15	16	17	18	19	20	
Inflow (cfs)	330	250	180	130	100	90	

9.3.4 Use the U.S. Army Corps of Engineers HEC-1 computer program to solve Problem 9.3.3.

REFERENCES

Alley, W. M., and P. E. Smith, Distributed Routing Rainfall-Runoff Model, Open File Report 82-344, U.S. Geological Survey, Reston, VA, 1987.

Bradley, J., *Hydraulics of Bridge Water Way*, Hydraulic Design Sevies No. 1, Federal Highway Administration, U.S. Department of Transportation, Washington, DC, 1978.

Chow, V. T., *Open Channel Hydraulics*, McGraw-Hill, New York, 1959.

Chow, V. T. (editor-in-chief), *Handbook of Applied Hydrology*, McGraw-Hill, New York, 1964.

Chow, V. T., D. R. Maidment, and L. W. Mays, *Applied Hydrology*, McGraw-Hill, New York, 1988.

Cudworth, A. G., Jr., *Flood Hydrology Manual*, U. S. Department of the Interior, Bureau of Reclamation, Denver, CO, 1989.

Cunge, J. A., "On the Subject of a Flood Propagation Method (Muskingum Method)," *Journal of Hydraulics Research*, International Association of Hydraulic Research, vol. 7, no. 2, pp. 205-230, 1969.

Fread, D. L., "Discussion of 'Implicit Flood Routing in Natural Channels,' by M. Amein and C. S. Fang," *Journal of the Hydraulics Division, ASCE*, vol. 97, no. HY7, pp. 1156-1159, 1971.

Fread, D. L., *Numerical Properties of Implicit Form-Point Finite Difference Equation of Unsteady Flow*, NOAA Technical Memorandum NWS HYDRO 18, National Weather Service, NOAA, U.S. Dept. of Commerce, Silver Spring, MD, 1974.

Fread, D. L., "Theoretical Development of Implicit Dynamic Routing Model," Dynamic Routing Service at Lower Mississippi River Forecast Center, Slidell, Louisiana, National Weather Service, NOAA, Silver Spring, MD, 1976.

Henderson, F. M., *Open Channel Flow*, Macmillan, New York, 1966.

Hewlett, J. D., *Principles of Forest Hydrology*, University of Georgia Press, Athens, GA, 1982.

Lighthill, M. J., and G. B. Whitham, "On Kinematic Waves, I: Flood Movement in Long Rivers," *Proc. Roy. Soc. London A*, vol. 229, no. 1178, pp. 281-316, 1955.

Maidment, D. R. (editor-in-chief), *Handbook of Hydrology*, McGraw-Hill, New York, 1993.

Masch, F. D., *Hydrology*, Hydraulic Engineering Circular No. 19, FHWA-10-84-15, Federal Highway Administration, U.S. Department of the Interior, McLean, VA, 1984.

Mays, L. W., and Y. K. Tung, *Hydroystems Engineering and Management*, McGraw-Hill, New York, 1992.

McCuen, R. H., *Hydrologic Analysis and Design*, Prentice-Hall, Englewood Cliffs, NJ, 1989.

Morris, E. M., and D. A. Woolhiser, 1980, "Unsteady One-Dimensional Flow over a Plane: Partial Equilibrium and Recessional Hydrographs," *Water Resources Research* 16(2): 355-360.

Mosley, M. P., and A. I. McKerchar, "Streamflow," in *Handbook of Hydrology* (edited by D. R. Maidment), McGraw-Hill, New York, 1993.

Ponce, V. M., *Engineering Hydrology: Principles and Practices*, Prentice-Hall, Englewood Cliffs, NJ, 1989.

Strahler, A. N., "Quantitative Geomorphology of Drainage Basins and Channel Networks," section 4-II in *Handbook of Applied Hydrology*, edited by V. T. Chow, pp. 4-39, 4-76, McGraw-Hill, New York, 1964.

Strelkoff, T., "Numerical Solution of Saint-Venant Equation," *Journal of the Hydraulics Division, ASCE*, vol. 96, no. HY1, pp. 223-252, 1970.

Strelkoff, T., The One-Dimensional Equations of Open-Channel Flow, *Journal of the Hydraulics Division, American Society of Civil Engineers*, vol. 95, no. Hy3, pp. 861-874, 1969.

U.S. Army Corps of Engineers, "Routing of Floods Through River Channels," *Engineer Manual*, 1110-2-1408, Washington, DC, 1960.

U.S. Army Corps of Engineers, Hydrologic Engineering Center, *HEC-1, Flood Hydrograph Package, User's Manual*, Davis, CA, 1990.

U.S. Department of Agriculture, Soil Conservation Service, "A Method for Estimating Volume and Rate of Runoff in Small Watersheds," Tech. Paper 149, Washington, DC, 1973.

U.S. Department of Agriculture, Soil Conservation Service, "Urban Hydrology for Small Watersheds," Tech. Release no. 55, Washington, DC, 1986.

U.S. Environmental Data Services, *Climate Atlas of the U.S.*, U.S. Government Printing Office, Washington, DC, pp. 43-44, 1968.

U.S. National Research Council, Committee on Opportunities in the Hydrologic Sciences, Water Science and Technology Board, *Opportunities in the Hydrologic Sciences*, National Academy Press, Washington, DC, 1991.

Viessman, W., Jr., and G. L. Lewis, *Introduction to Hydrology*, fourth edition, Harper and Row, New York, 1996.

Woolhiser, D. A., and J. A. Liggett, Unsteady, One-Dimensional Flow Over a Plane—the Rising Hydrograph, *Water Resources Research*, vol. 3(3), pp. 753-771, 1967.

Woolhiser, D. A., R. E. Smith, and D. C. Goodrich, *KINEROS, A Kinematic Runoff and Erosion Model: Documentation and User Manual*, U. S. Department of Agricultural Research Service, ARS-77, Tucson, AZ, 1990.