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- 93 HYDROLOGIC RIVER ROUTING

The Muskingum method is a commonly used hydrologic routing method that is based upon a vari-
able discharge-storage relationship. This method models the storage volume of flooding in a river
channel by a combination of wedge and prism storage (Figure 9.3.1). During the advance of a
flood wave, inflow exceeds outflow, producing a wedge of storage. During the recession, outflow
exceeds inflow, resulting in a negative wedge. In addition, there is a prism of storage that is formed
by a volume of constant cross-section along the length of prismatic channel,

Assuming that the cross-sectional area of the flood flow is directly proportional to the discharge
at the section, the volume of prism storage is equal to KQ, where K is a proportionality coefficient
(approximate ag the travel tirne through the reach), and the volume of wedge storage is equal to
KX(I — Q), where X is a weighting factor having the range 0 < X < 0.5. The total storage is defined
as the sum of two components, c

S=KQ+EX{i—- ) (9.3.1)
which can be rearranged to give the storage function for the Muskingum method

S = K[XI+(1 — X300 (9.32)

and represents a linear model for routing flow in streams. ,

The value of X depends on the shape of the modeled wedge storage. The valve of X ranges from
0 for reservoir-type storage to 0.5 for a full wedge. When X = 0, there is no wedge and hence no
backwater; this is the case for a level-pool reservoir. In patural streams, X is between 0 and 0.3,
with a mean value near 0.2. Great accuracy in determining X may not be necessary because the
results of the method are relatively insensitive to the value of this parameter. The parameter K is
the time of travel of the flood wave through the channel reach. For hydrologic routing, the values
of K and X are assumed to be specified and constant throughout the range of flow.

The values of storage at time j and J + 1 can be written, respectively, as

8;= KX, + (1 — X)) (9.3.3)
Sie1 = KX + (1 - X)0,,] (9.3.4)

Using equations (9.3.3) and (9.3.4), the change in storage over time interval At is
Sp 8 = KXy, + (1 - 600,01 ~ XL+ (1 — X0]) (9.3.5)

Woedge storage
=EX(I-0)

Prism
storage = KQ

o

Fignre 9.3.1 Prism and wedge storages in a channel reach.
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The change in storage can also be expressed using equation (9.2.1). Combimning equations (9.3.5)
and (9.2.1) and simplifying gives '

river Qj-” = C11j+] + szj + C3Qj (936)
.f;)f a which is the routing equation for the Muskingum method, where
flow
rmed At - 2]{:’{
= 9.3.
YT 2K(I-X)+ A7 93.7)
liii Ar+2KX (9.3.8)
2 .3,
ial to 2E(1-X)+Ar
fined 2R(1- X)- At
- 2RA-X) - At (9.3.9)
. 2E(~X)+ At
+3.1) Note that C; + C, + C; = L.
The routing procedure can be repeated for several sub-reaches (Ns:eps) 50 that the tota] travel
7 time through the reach is K. To insure that the method is computationally stable and accurate, the
3.2) U.S. Army Corps of Engineers (1990) uses the following criterion to determine the number of
routing reaches:
from 1 K 1
< <.
& 1o b < (9.3.10)
T.0.3, g(l -X) Noepsbt - 2X
: the If observed inflow and outflow hydrographs are available Tor a river reach, the values of X and
Kis X can be determined. Assuming various values of X and using known values of the inflow and out-
ilues flow, successive values of the numerator and denominator of the following expression for K,
derived from equations (9.3.5) and (9.3.8), can be computed using
-  OSMUi 1)~ (@ + g )] 0310
3.3) Xy~ 1)+ (- XXQ; ;- Q) -
3.4) The computed values of the mumerator (storage) and denominator (weighted discharges) are plot-
ted for each time interval, with the numerator on the vertical axis and the denominator on the hor-
izontal axis. This usually produces a graph in the form of a loop, as shown in Figure 9.3.2. The
3.5) value of X that produces a loop closest to a single line is taken to be the correct value for the reach,

and X, according to equation (9.3.11), is equal to the slope of the line. Since X is the time required
for the incremental flood wave to traverse the reach, its value may also be estimated as the
observed time of travel of peak flow through the reach,

'
e
oy

The objective- of this example is to determine K and X for the Muskingum routing method using the
February 26 to March 4, 1928 data on the Tuscasawas River from Dover to Newcomerstown. This
example is taken from the U'S. Army Corps of Engineers (1960) as used in Cudworth (1989). Columns
2 and 3 in Table 9.3.1 are the inflow and outflow hydrographs for the reach. The numerator and denom-
inator of equation (9.3.11) were computed (for each time period) using four values of X = (), 0.1, 0.2,
and 0.3. The accomulated numerators are in colimn 9 and the accumulated denominators (weighted dis-
charges) are In columns 11, 13, 15, and 17. In Figure 9.3.2, the accumulated numezator (storages) from
column (9) are plotted against the corresponding accumulated denominator (weighted discharges) for
cach of the four X values. According to Figure 9.3.2, the best fit (linear relationship) appears to be for
X = 0.2, which has a resulting K = 1.0. To perform a rouiing, K should equal A, so that if Az = 0.5
day, as in this case, the reach should be subdivided into two equal reaches (Nmps = 2) and the value of
K should be (1.5 day for each reach.

T e N T R e e T




i

290 Chapter 9 Reservoir and Stream Flow Routing

i

(6861) qHOMpRD ..mu:wa.w
(fo-2o)x -1+ {1-)x _q ‘opumousg

[(lo+%0)- (7 +2Dkvs0

“¥ pue Yy SUIISP O} PAISPISIOD ST 1Y 159q A1) Fwiard ucE 2 (41D pue {(ST) “(€1) (11) SWmmjoa sns1A () wunod jo sfumord wol N
*[(2) wmno2 ~ (9) munoaly + (L) UUINJoD ST °(F TOTRUTHIOUS(],
*(C) Uwnjod — () RO ‘74T ST N TOIRISUMN,

=X

N ‘IoreIonuIniy

umoiszswooman] ¢ ydedorpAy sy st monQ,
*MOANO JO dwnjoa Tenba o) paysnlpe sem Yowal 01 MOTTUY,

006°T — 01T — 00¥'T - 009'T e 002 — — — — — 009%  0O¥'T  'UP'EB GZ-S0-E
00L'T 008- 008'T 004~ 000°€ 009~ 00Z'e 005~ 0ozl 000'1-  009- 00Z'1- 0086  QO0'Q 00zZ'¢ gog'e  wd
009°E 006~ 006'c 00L'1-  002'v 00T'1-  00F'F 00T 1~ 00TT 0OO'T~  00T'T—  00%-— 00911 00L'L 00¥'9  Q0T'%  "Ur'B 6T-H0E
00Z's 0091~  00§'S 009'T—  006'S 00L'T—  00Z'9 008'1— 009'c 00F' 1~ 0081 006~ 009'%T  001%6 002’8 ooo's wd
008°L 009z~  00E'8 008'c-  00L'8 008’z 00Z'6 000'¢— 008°s 006'T— 000t~  0OL'T—  OO¥'6T  ODL'IT  O0Z'IT  OOL'G W 6Z-£0-€
00¥'11  009°¢- 00121  00%'f—  QOL'ZT 000"  OO0E'el  0Ol'p- 001°8 00§°2-  00I%~  009Z~ 00§99  000°91  00g'sT  oog's  wrd
00€'CT 006~ 00091 0066~  00L9T 000  OOV'LT  00T'%— 00E'IT  00Z'¢—  00I'v—  00£'t—  OOL'WE  Q06'TZ  OQOF'6T  QO9TI  "UI'® 6T-TO-€
00S'6T  00T'%~  00E0T  0OE¥~  000‘TC  O0S'+—  008'IC  OO'i— 006PT  009°¢—  OOF'P—  OOL'e—  Q0T'er  006'8T 008t ooggr  wed
Q06'€Z  00F'P—  008'%Z 00§ . 009°ST 009  0O¥'9C 009 008'8T 006t~ 009y~  OO0I%  00T°T¢ QOL'9E  O0F'8T  OOF0T ‘Wre 6Z-10-€
006'ST 000"z~  QOE'9T  OOS'T~  00L'92  OOT'T~  OQOT'LZ  00L- 00L'1Z Q06T  OOL~ 006'F~ 00826 Q0L°sy 00162 oog'se  wd
009'€T  00£'T 001'€T  00T'E 009'TT  00T'F 000'ZT  O0T'S 00Z'1T 00§ 001'¢ 00F'¥—  QOT'€S  O0D0'SS  00'%Z  Q0L'6T  "WI'¥ 6T-8CT-C
00061 Q0% 00§°LE 009 006'sT  OOL'e 00S'v1  00§'L 000'91 Q0TS 008°L 001'Z— 00S‘'Or  005'T9  Q0S'9T  oog'le  wd
DOLYT  QOE'D QO0'El  0OSY 00g 1T 009 00L'6 008'y 000'8 000'8 008 00F'¢ 00787 00Z'09 OOL'TT  OOF'ST  "WegZ-L7T
007'L 005°L 0059 0059 00LS 009°5 000°s 00L'F 006'1 001’9 0Ly 006'ET  OOL'RT  006'CF  000'L oos'yr  wd
00T'L 005’9 00L'S 000's 006'T 000’ -QDEZT 0006 0DL'9T 000'T Q0T W 6Z-9Z-T
(L1} (o1 (5T #1) (1) (D an oD /0 8/
az a ~az a ax ad az a, s/l S/ S/ S/ ‘Lmol) Moy Aep o =1y
— ... T = NT Ne “o-%0 ‘Y- Yo+%o G+Y  -amp -u s
FOTX co=x ro=x 0=x © ® 5 © © W © © W
X JO SanfeA PIWINSSY I0f (7T PUE (7 JO SON[BA
mNm_v. ..v ﬂu.mdz 01 @N h.uﬂan—um.. .mBOuwHDEOUBDZ m HDbOQ _H_"OH.H Domom OEO
‘urseq WNSUISHA] TRATY SEMETROSO], © ‘£'6 q8L

pomey Sunmoy MU o) 10] ¥ PUE ¥ SJUSIONJA0) JO TONEUNLIAN |




9.3 Hydrologic River Routing 291

40,000
K=0.89 k=095
| 7 7]
30,000
20,000 /// ’ ' / y
[=]
g 10,000 /
7
j=
3
© X=0 X=0.1
5 0
g
£ 40,000
5
3 K=1.00 K=1.05
B 1 / 1l
© 80,000 7 /]
£
2
(1)
= /// /
20,000 /t //
10,000 / /
o X=0.2 X=03
0 10,000 20,000 80,000 0 10,000 20,000 30,000

Storage in 1-day cubic feet per second

Figure 9.3.2 Typical valley storage curves.

Route the inflow hydrograph below using the Muskinginn method; Ar = 1 he, X = 0.2, K = 0.7 hrs.

Time (hrs) 0 1 2 3 4 5 6 7
Inflow (cfs) 0 800 2000 4200 5260 4400 3200 2500
Time (hrs) 8. 9 10 11 12 13
Inflow (cfs) 2000 1500 1000 700 400 O}, .

C = 1.0-2(0.7)(0.2) — 03396

2(0.7)1- 0.2)+1.0

C, = LOr20D0 o o
200.7%1—0.2)+1.0

C. = 200(1-0.2)-1.0
200.7¢1-0.2)+1.0

{Adapted from Masch (1 9843.)

= (.0566
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94 HYDRAULIC (DISTRIBUTED) ROUTING

Checktoseeif C, + G, + Cy = 1t
0.3396 + 0.6038 + 0.0566 = 1
Using equation (9.3.6) with I} = 0 cfs, I, = 800 cfs, and (; == 0 cfs, compute O, at 1 = 1 hr:
G, =Gl + Gl + GO,

= (0.3396)(800) + 0.6038(0) + 0.0566(0)

= 272 cfs (7.7 m’fs)
Next compute Oy at r = 2 hr:
G5 = Oy + GL+ G0,

= (0.3396)(2000) + 0.6038(800) + 0.05656(272)

= 1178 cfs (33 m’/s) '
The remaining computations result in
Time (hrs) 0 i 2 3 4 5 6 7
Q (cfs) 0 272 1178 2701 4455 4886 4020 3009
Time (hrs) 8 9 10 11 12 13 14 15
3 (cfs) 2359 1851 1350 018 610 276 16 1

Distributed routing or hydraulic routing, also referred to as unsteady flow routing, is based upon
the one-dimensional unsteady flow equations referred to as the Saint-Venant equations. The
hydrologic river routing and the hydrologic reservoir routing procedures presented previously are
limped procedures and compute flow rate as a function of time alone at a downstream location.
Hydraulic (distributed) flow routings allow computation of the flow rate and water surface eleva-
tion (or depth) as function of both space (focation) and time. The Saint—Venant equations are pre-
sented in Table 9.4.1 in both the velocity-depih (nonconservation) form and the discharge-area
(conservation) form. .

The momentum equation containg terms for the physical processes that govern the flow momen-
tum. These terms are: the local acceleration term, which describes the change in momentum due
to the change in velocity over time, the convective acceleration term, which describes the change
in momentam due to change in velocity along the channel, the pressure force term, proportional
to the change in the water depth along the channel, the gravity force term, proportional to the bed
slope S, and the friction force term, proportional to the friction slope 3;. The local and convective
acceleration terms represent the effect of inertial forces on the flow.

Alternative distributed flow routing models are produced by using the full continuity equation
while eliminating some terms of the momentum equation (refer to Table 9.4.1). The simplest dis-
iributed model is the kinemaric wave model, which neglects the local acceleration, convective
acceleration, and pressure terms in the momentum equation; that is, it assumes that 8y =8, 7 and the
friction and gravity forces balance each other. The diffusion wave model neglects the local and
convective acceleration terms but incorporates the pressure term. The dynamic wave model con-
siders all the acceleration and pressure terms in the momentum equation.

The momentum equation can also be written in forms that take into account whether the flow
is steady or unsteady, and uniform or nonuniform, as illustrated in Table 9.4.1. In the continuity
equation, dA/0t = 0 for a steady flow, and the lateral inflow g is zero for a uniform flow.




20D

are

:OR,
va-
re-
rea

ien-
due
nge
mal
bed
tive
tion
dis-
tive

low
uity
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Table 9.4.1  Summary of the Saint—Venant Equations*

Continuity equation

00 o4
Bx+8r_0

Conservation forim

V@+a—v+§1*0

ox tax ot
Couservation form 3

130 .‘I_E{_(Qz) LY

Nonconservation form

Momentum equation

— = - - S, - 8 ={
A ot Adx\ A gax 8(5, 7)
Local Convective Pressure  Gravity  Friction '
acceleration  acceleration force force force
term term term term term

Noncorservation form (unit with clement)

ov ov dy
—_— + V— + = - S, - S =0
ot ox o dx 8(5 )
l— Kinematic wave
- Diffusion wave
- Dynamic wave

*Neglecting lateral inflow, wind shear, and eddy losses, and assuming 8 = 1.

X =longitndinal distance along the channel or Tiver, ¢ = time, A = ¢ross-sectional area of flow, h = water surface ele-
vation, 5, = friction slope, 8y = channel bottorn slope, g = acceleration due to gravity, V= velocity of flow, and y=
depth of flow.

| 9.4.1 Unsteady Flow Equations: Continuity Equation

The continuity equation for an unsteady variable-density flow through a control volume can be
written as in equation (3.2.1x

0=2 jpciV+ij-dA (9.4.1)
dt
CvV Cs

Consider an elemental control volume of length dx in a channel. Figure 9.4.1 shows three views
of the control volume: (g) an elevation view from the side, (b) a plan view from above, and {(c) a
channel cross-section. The inflow to the control volume is the sum of the flow € entering the con-
trol volurne at the upstream end of the channel and the lateral inﬂow’& entei'iﬁg the control vol-
urme as a distributed flow along the side of the channel. The dimensjons of g are those of flow per
unit length of channel, so the rate of lateral inflow is gex and the mass inflow rate is

| [ov-aa=-po+ qdx) (9.4.2)
indet
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pe
2

Energy grade line

Datum

 {c) Cross-section.

Figure 9.4.1 An elemental reach of channel for derivation of Saint-Venant

equations.

This is negative because inflows are considered negative in the control volume approach
(Reynolds transport theorem). The mass outflow from the control volume is

outlet

_of0+22
JpV.dA—p[m > dx)

(9.4.3)

where 00/dx is the rate of change of channel flow with distance. The volume of the channel ele-
ment is Adx, where A is the average cross-sectional area, so the rate of change of mass stored

within the control volume is

cv

o dpAdy)

3 {9.4.4)
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where the partial derivative is nsed because the control volume is defined to be fixed in size
(though the water Jevel may vary withis it). The net outflow of mass from the control volume is
found by substituting equations (9.4.2)49.4.4) into (9.4.1):

HpAdx o
elds) )—p(Q+qu)+p(Q+—Q—dx =0 (9.4.5)
dt ox
Assuming the fluid density p is constant, equation (9.4.5) is simplified by dividing through by pdx
and rearranging to produce the conservation Jorm of the continuity equation,

d0 dA

=+ g=0 : 4.
St (9.4.6)

.

which is applicable at a channel cross-section. This equation is valid for a prismaric or a RONPFis-
matic channel; a prismatic channel is one in which the cross-sectional shape does not vary along
the channe} and the bed slope is constant,

For some methods of solving the Saint—Venant equations, the ronconservation form of the con-
tinuity equation is used, in which the average flow velocity V is a dependent variable, instead of
Q. This form of the continuity equation can be derived for a unit width of flow within the chan-
nel, neglecting lateral inflow, as follows. For a unit width of lowA=yXi=yamdQ=VA =
Vy. Substituting into equation {8.4.6) yields

a(Vy) oy
RALELAITC Ay, 4.7
> o 041
or
LA
\% ™ +y 5 + o 0 (9.4.8)

942 Momentum Equation

Newton’s second law is written in the form of Reynolds transport theorem as in equation (3.4.5):
Y=L fvpavi T vpv-an / (949
dt & =

This states that the sum of the forces applied 1s equal to the rate of change of momentum stored
within the control volume plus the net outflow of momentum across the control surface. This equa-
tion, in the form ZF = 0, was applied to steady uniform flow in an open channel in Chapter 5.
Here, unsteady nonuniform flow is considered.

Forces. There are five forces acting on the control volume:

oach
‘ ZE:%+Ff+F;+_FJ'D (9.4.10)
where F o 18 the gravity force along the channel due to the weight of the water in the contro] volume,
4.3) Fis the friction force along the bottom and sides of the contro} volume, F, is the contraction/
expansion force produced by abrupt changes in the channel cross-section, and F » 18 the unbalanced
: ele pressure force (see Figure 9.4.1). Each of these four forces is evaluated in the following para-
ored graphs. .
Gravity. The volume of fluid in the control volume is Adx and its weight is pgAdx. For a small
angle of channel inclination 6, S = sin 6 and the gravity force is given by
F, = pgAdx sin § ~ PeA S dx {9.4.11)

"4,
' where the channel bottom slope §, equals —dz/ax,
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Friction. Frictional forces created by the shear stress along the bottom and sides of the control
volume are given by ~-7,Pdx, where 7, = YRS, = pg(A/P)S; is the bed shear stress and P is the
wetted perimeter. Hence the friction force is written as

E= —pgAS;dx (94.12)

‘where the friction slope S is derived from resistance equations such as Manning’s equation.

Contraction/expansion. Abrapt contractions or expansions of the channel cause energy losses
through eddy motion. Such losses are similar to minor losses in a pipe system. The magnitude of
eddy losses is related to the change in velocity head V2/2g = (Q/A)*/2g through the length of chan-
nel causing the losses. The drag forces creating these eddy losses are given by

F = —pgAS, dx {9.4.13)
where §, is the eddy loss slope
3 A2
S, = K, oQ/A7 9.4.14)
2g ox

in which X, is the nondimensional expansion or contraction coefficient, negative for channel
expansion (where 3((Q/A)*/ax is negative) and positive for channel contractions. )

Pressure. Referring to Figure 9.4.1, the unbalanced pressure force is the resultant of the hydro-
static force on the each side of the control volume. Chow et al. (1988) provide a detailed deriva-
tion of the pressure force F, as simply

B oA ax (9.4.15)
ax
The sum of the forces in equation (9.4.10) can be expressed, after substituting equations
(9.4.11), (3.4.12), (9.4.13), and (9.4.15), as

4
P

Momentum. The two momentum terms on the right-hand side of equation (9.4.9) represent the
rate of change of storage of momentum in the conirol volume, and the net cutflow of momenturn
across the control surface, respectively.

Net momentum outflow. The mass inflow rate io the control volume (equation (9.4.2)) is
—p(Q + gdx), representing both stream inflow and lateral inflow. The corresponding momentum
is computed by multiplying the two mass inflow rates by their respective velocity and a momen-
tum correction factor 3:

3F = pASydx — pgAS pdx — pgAS, dx — pgA (9.4.16)

[ VoV.dA = —p(BVQ+Bv,qdx) ‘ 9.4.17)
inlet ) X
where —-pBV( is the momentum entering from the upstream end of the channel, and —pBv, gdx is
the momenturm entering the main channel with the lateral inflow, which has a velocity v, in the x
direction. The term B is known as the momentum coefficient or Boussinesq coefficient; it accounts
for the nonuniform distribution of velocity at a channel cross-section in computing the momen-
tum. The value of B is given by

1

S ]
= VZAJV dA (9.4.18)

B
where v is the velocity through a small element of area dA in the chamnel cross-section. The value
of B ranges from 1.01 for straight prismatic channels to 1.33 for river valleys with floodplains
(Chow, 1959; Henderson, 1966).
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The momenturn leaving the control volume is

| Vov,aa = p[BVQ-r- i(?;g)dx] (9.4.19)
21
uuﬂel))(

The net outflow of momentum across the control surface is the sum of equations (9.4.17) and
(94.19):

J- VpVAA = — p(BVQ + Brgdx) + P[BVQ + 3(BBZQ) dx:l

Cs ? .
d
= —p[Bvxq - m]dx (9.4.20)
ox
Momentumn storage. The time rate of change of momentum stored in the control volame is found

by using the fact that the volume of the elemental channel is Adx, so its momentum is pAdxV, or
pQdx, and then

d _ 30
- ij VpdV—p—ﬁdx (9.4.21)

After substituting the force terms from equation (9.4.16) and the momentum terms from equations
(9.4.20) and (9.4.21) into the momentum equation (9.4.9), it reads

pgASydx — pgAS rdx — pgAS, dx — pgA—g—ijdx = -p[B v.g— "a(gﬂ]dx + paa—?dx (94.22)
X

Dividing through by pdx, replacing V with Q/4, and rearranging produces the conservation form
of the momentum eguation:

90 IBL*/A) (_al_ J_ _
> +-—-—ErL +gA ™ SD+Sf +8, |~Bgv, =0 (9.4.23)

The depth y in equation (9.4.23) can be replaced by the water surface clevation h, using
h=y+z {(9.4.24)

where z is the elevation of the channel bottom above a datum such as mean sea level. The deriva-
tive of equation (9.4.24) with respect to the longitudinal distance x along the channe] is

oh _dy oz

5)‘{- = o + . (94.25)
but dzfax = —S;, 50

oh _dy _

= A (9.4.26)

The momentum equation can now be expressed in terms of & by uking eqtiation (9.4.26) in
(9.4.23):

a0 , e 0*/4) [% I
"aT+T+gA ax +Sf +Se qux "‘»0 (9-427)

The Saint-Venant equations, (5.4.6) for continuity and {9.4.27) for momentum, are the govern-
ing equations for one-dimensional, uasteady flow in an open channe), The use of the terms S, and
§, in equation {9.4.27), which represent the rate of energy loss as the flow passes through the chan-
nel, illustrates the close relationship between energy and momentum considerations in describing
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the flow. Streikoff (1969) showed that the momentum equation for the Saint—Venant equations can
also be derived from energy principles, rather than by using Newton’s second law as presented
here.

The nonconservation forn: of the momentum equation can be derived in a similar manner to the
nonconservation form of the continuity equation. Neglecting eddy losses, wind shear effect, and
lateral inflow, the nonconservation form of the momentum equation for a unit width in the flow is

. v v [y _
at + V ax +g(ax So + SfJ = O (9.4.28)

9.5 KINEMATIC WAVE MODEL FOR CHANNELS

In Section 8.9, a kinematic wave overland flow runoff model was presented. This is an implicit
nonlinear kinematic model that is used in the KINEROS model. This section presents a general
discussion of the kinematic wave followed by brief description of the very simplest linear models,
such as those found in the U.S. Army Corps of Engineers HEC-1, and the more complicated mod-
els such as the KINEROS model (Woolhiser et al., 1990).

Kinematic waves govern flow when inertial and pressure forces are not important. Dynamic .
waves govern flow when these forces are irnportant, as in the movement of a large flood wave in
a wide river. In a kinematic wave, the gravity and friction forces are balanced, so the flow does
not accelerate appreciably.

For a kinematic wave, the energy grade line is parailel to the channel bottom and the flow is
steady and uniform (§;, = Sf) within the differential length, while for a dynamic wave the energy
grade line and water surface elevation are not parallel to the bed, even within a differential
element.

951 Kinematic Wave Equations

A wave is a variation in a flow, such as a change in flow rate or water surface elevation, and the
wave celerity is the velocity with which this variation travels along the channel. The celerty
depends on the type of wave being considered and may be quite different from the water velocity.
For a kinematic wave the acceleration and pressure terms in the momentum equation are negligi-
ble, so the wave motion is described principally by the equation of continuity. The name kinematic
is thus applicable, as kinematics refers to the study of motion exclusive of the influence of mass
and force; in dynamics these quantities are included.
The kinematic wave model is defined by the following equations.

Continuity:
90 oA _
™ + P =g{x, 1) (9.5.1)
Momentum:
$, = Sf (9.5.2)

where g(x, #) is the net lateral inflow per unit length of. channel,
The momentum equation can also be expressed in the form

A=cQP - (9.53)
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For example, Manning’s equation written with Sy = S;and R = A/P is

14952
g= _—*npzfs A : (9.5.4)
which can be solved for A as
3/5
mp2i3 375
A= Q (9.5.5)
{1.49 S J

0 a =[nP2"3/(1.49\/§0‘ )]0'6 and B = 0.6 in this case,

Equation (9.5.1) contains two dependent variables, A and 0, but A can be eliminated by differ-
entiating equation (9.5.3):

oA B-1 ( aQ
—= — 9.5.6
ot o0 ot ( )
and substituting for dA/3¢ in equation (9.5.1} to give
a0 B-1 ( ag
E— — = e
Fw aBQ > q B.57
Alternatively, the momentum equation could be expressed as
Q = aA® {(9.5.8)
where a and B are defined using Manning’s equation. Using
a0 dQ oA
T = 5.
35 dA ox ©:5.9)
the governing equation is
g4 | dQ oA
—_—= 5.
* daox ¢ ©:5.10)
where d()/dA is determined by differentiating equation (9.5.8):
aQ B-1
—==gBA 9.5.11
) ( )

and substituting in equation (9.5.10):

: BA i B-1 aA _
5, HaBA 5= 95.12) ©

The kinematic wave equation (3.5.7) has O as the dependent variable and the kinematic wave

equation (9.5.12) has A as the dependent variable. First consider equati/on (9.5.7), by taking the
logarithm of (9.5.3): T

InA=Ina+BInQ (9.5.13)

and differentiating

(9.5.14)
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This defines the relationship between relative errors dA/A and 4Q/Q. For Manning's equation
B < 1, so that the discharge estimation error would be magnified by the ratio 1/ if A were the
dependent variable instead of Q.

Next consider equation (9.5.12); by taking the logarithm of (9.5.8):

InQ=1Ina+BlnA (9.5.15)
dA _1(dQ
‘ A B o
or
40 _ pldA i
0 —B{A) _ (9.5.16)

In this case B > 1, so that the discharge estimation error would be decreased by B if A were the
dependent variable instead of (. In snmmary, if we use equation (9.5.3) as the form of the momen-
tum equation, then @ is the dependent vasiable with equation (9.5.7) being the governing equation;
if we use equation (9.5.8) as the form of the momentim equation, then A is the dependent variable
with equation (9.5.12) being the governing equation.

9.5.2 US. Army Corps of Engineers HEC-1 Kmematlc Wave Model for Overland
Flow and Channel Routing

The HEC-1 computer program actually has two forms of the kinematic wave. The first is based upon
equation (9.5.12) where an explicit finite difference form is used (refer to Figures 9.5.1 and 8.9.2):

AR AL
9.5.17
a: At ( )
JA A:-s-l — AJ
3% - Ax (9.5.18)
and
(A
A= ’+— (9.5.19)
2
CI;+1 + q,+1 (9.5.20)
2
| Ax { a0
f+1 éx
. Al . 2; {04}
j+1 j+1
gA ) a0
At a_.!' E
J— - J—
A‘,! \-_______'—/ A£+ i . Q;’
A
i ax it1 i i+1
{=@) (&)

Figure 9.5.1 Tnite difference forms. (z) HEC-1 “standard form;” () HEC-1 “conservation form.”
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Substituting these finite-difference approximations into equation (9.5.12) gives

; ; B-1 . ; : .
1, ; . I+ A I —A ] gt gl
Z\_z( - al)va A,+12 4 J [Aﬁjﬁx A; J: is . Gis1 95.21)

The only unknown in equation (9.5.21) is _,i+11, 0

. :9B-1 A
: . Ar J + A - é i+l C oy AL
AR = Al —aB[zx—J[i%i} (1~ 4.+ (a3 raa)s @522

After computing A{:}l at each grid along a time Jine going from upstream to downstream (see -
Figure 8.9.2), compute the flow using equation (9.5.8):

. B
Ol = a(Af3) 9.5.23)

The HEC-1 model uses the above kinematic wave model as long as a stability factor R < 1
(Alley and Smith, 1987), defined by .

R= ;?’E[(gm + A} )B (4 )B] forg >0 (9.5.242)
R =aB(A] )B'] % forg =0 (9.5.24b)

Otherwise HEC-1 uses the form of equation {9.5.1), where (see Figure §.5.1)
% ol -o"

e A (9.5.25)
S 4d
%/?1 - f&Tt‘f‘_z_ (9.5.26)
50
Qt{jll - foﬂ A1j+1 - Arj
+ = 5.27
PV A7 q (3.5.27)
Solving for the only unknown Q{:ll yields
O =0/ gl - %(A;f o4 ) (9.5.28)
Then solve for A7 using equation 9.5.23):
w1 (1 VB
A =(30i) 0,529

The initial condition (values of A and © at time () along the grid, referring to Figure 8.9.2) are com-
puted assuming uniform flow or nonuniform flow for an initial discharge. The upstream boundary
is the inflow hydrograph from which Q is obtained.

The kinematic wave schemes used in the HEC-1 model are very simplified. Chow et al. (1988)
presented both linear and nontinear kinematic wave schemes based upon the equation (9.5.7) for-
mulation. An example of a more desirable kinematic wave formulation is that by Woolhiser et al.
(1990) presented in the next subsection.
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9.5.3 KINEROS Channel Flow Routing Model

The KINEROS channel routing model uses the equation (9.5.10) form of the kinematic wave
equation (Woolhiser et al., 1990):;

94 dQ d4

51
el ) (9.5.10)
where g(x, £) is the net lateral inflow per unit length of channel. The derivatives are approximated
o 7 using an implicit scheme in which the spatial and temporal derivatives are, respectively,
AIJH _AJH-] 1+I Aj
e {1-p) L. 9.530
ax Y (1-8)—= - (9530
JHLO A JH ) JHY 4 j
4004 = g(ﬂj M +(1- 9)( ) A A (9.531)
dA ox dA Ax _ Ax
and
a4 1laitt—aj 4
A U4 d: A’ (9.5.32)
Jat 2 LY; At
or
j+l + j+t H A
d4: A‘r A] Ax i+1 (9.5.33)
a 24t

Substituting equations (9.5.31) and (9.5.33) into (9.5.10), we have
- ALY Myt A -4 9[(§Q.Jj “{A&‘ —4f *iﬂm e)[( dQJf”[A, -4 H
24t dA Ax Ax

2({1:’111 o rala+dl) (9.5.34)

The only unknown in this equation is A, +1» Which must be solved for numerically by use of an iter-
ative scheme such as the  Newton-Rhapson method (see Appendix A).

Woolhiser et al. (1990) use the following relationship between channel discharge and cross-
sectional area, which embodies the kinematic wave assumption:

| Q=aR™ 4 {9.5.35)
where R is the hydraulic radius and & = 1.495%%n and m = 5/3 for Manning’s equation.

9.54 Kinematic Wave Celerity

Kinematic waves result from changes in Q. An increment in flow 40 can be written ag

aQ aQ
dQ=""=dx 5.
0= % +—= a: (9.5.36)
Dividing through by dx and rearranging progduces:
9 , dt3Q _ dg
. + & 4 (9.5.37)
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Equations (9.5.7) and (9.5.37) are identical if

4
@ g (9.5.38)
and
- 9.5:39
dt opgP! (9:5.39)
Diiferentiating equation (9.5.3) and rearranging gives
dg 1
and by comparing equations (9.5.38) and (9.5.40), it can be seen that
dx dQ
—_—=— 9541
dt  dA ( )
or
dx _ dQ
=—=—" 9.5.42
G dt  dA ¢ )

where ¢, is the kinematic wave celerity. This implies that an observer moving at a velocity
dxfdt = ¢, with the flow would see the flow rate increasing at a rate of dQ/dx = g-If g = 0 the
observer would see a constant discharge. Equations (9.5.38) and (9.5.42) are the characteristic
equations for a kinematic wave, two ordinary differential equations that are mathematically equiv-
alent to the governing continnity and momentum equations.

The kinematic wave celerity can also be expressed in terms of the depth y as

140
cp = B & {9.5.43)
where dA = Bdy,

Both kinematjc and dynamic wave motion are present in natural flood waves. In many cases the
channe] slope dominates in the momentum equation; therefore, most of a flood wave moves as a
kinematic wave. Lighthill and Whitham (1955) proved that the velocity of the main part of a nat-
ural flood wave approximates that of a kinematic wave. If the other momentum terms (9 V/az,

V(8V/éx) and (1/g)0y/dx) are not negligible, then a dynamic wave front exists that can propagate
both upstream and downstream from the main body of the flood wave.

9.6 MUSKINGUM-CUNGE MODEL

Cunge (1969) proposed a variation of the kinematic wave method based upon the Muskingum
method (see Chapter 8). With the grid shown in Figure 9.6.1, the unknown discharge @/ ++II can be
cxpressed using the Muskingum equation (Gpq = Cilpyy + Gl + GOy .

ol =0/ v a0l +ci0), (0.6.1)
where O/} = Qi4y; OFF = 415 O/ =1 ;> and ol = Q; - The Muskingum coefficients are

_ AKX
t

T 2K(A-X)+Ar 9.62)
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T ARES P Pa1
L 1” 01 =041
j+
7] -
I s -
Qj"I‘ Q{+§_Qj+1
LS
i i+1
e —
i i+

Figore 9.6.1 Finite-difference grid for

Muskingum--Cnnge method.
At +2KX
T R1-X)+ A (0-63)
_2K(1-X)-At
3T 2KA-X)+ A 064

Cunge (1969) showed that when X and At are considered constant, equation (9.6.1ﬁ) is an
approximate solution of the kinematic wave. He further demonstrated that (9.6.1) can be consid-
ered an approximation of a modified diffusion equation if

Ax Ax
= ; = W (9.6.5)
and
Y PR L
X= 3 [l BerSe AXJ (9.6.6)

where ¢, is the celerity corresponding to @ and B, and B is the width of the water surface. The
value of Ax/(dQ/dA) in equation (9.6.5) represents the time propagation of a given discharge along
a channel reach of length Ax. Numerical stability requires 0 S)(é 1/2. The solution procedure is
basically the same as the kinematic wave.

9.7 IMPLICIT DYNAMIC WAVE MODEL

The conservation form of the Saint—Venant equations is used becanse this form provides the ver-
satility required to simulate a wide range of flows from gradual long-duration flood waves in rivers
to abrupt waves similar {o those caused by a dam failure. The equations are developed from equa-
tions (9.4.6) and (9.4.25) as follows.

Weighted four-point finite-difference approximations given by equations (9.7.1)-(9.7.3) are
used for dynamic routing with the Saint—Venant equations. The spatial derivatives 30Q/dx and oh/ox
are estinzated between adjacent time lines:
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aQ Qf++1] _QJ-H Qz+1 Qj

P T +(1- B)T 5.7.1)
}l!j+] _ h]+] +1 hj’
ax A — o+ (-8 Ax, 9.7.2)
and the time derivatives are: _
HA+Ag) _ (A+ A} +(A+ A —(A+ A —(A+ A)l,, ©73
= ) 13)
ot 24At;
aQ Q‘H-I + Qij:ll r i]-.H

o 2Ar; ©.1.4)

g
The nonderivative terms, such as g and A, are estimated between adjacent time lines, using:
_,r-H J+l

g=0"— el o g4 2% =0g/"" +(1-0)z (9.7.5)
J+1 j+t J i . .
A= G[A’ * Ay J+ (- e)[—-——A‘ +A’*‘_J = 047" +(1-8)4] ©.7.6)

where g; and A, indicate the lateral flow and cross-sectional area averaged over the reach Ax,.
The finite- difference form of the continuity equation is produced by substituting equations.
9.7.1), (9.7.3), and (9.7.5) into (9.4.6):

Jtl +1
e[_._thALQf 1+IJ+(1 e)(Q”;x_Q ~c}{]

LA+ 8 +(A+ A - (a+ AT~ A+ A),,
' 2Az;

)

=0 (8.7.7)

Similarly, the momentum equation {9.4.27) is written in finite-difference form as:

J+l j+l i
Q" +0 -0 Qz+1

2Arj
B /AY " —(Bo?/a)™ (R .
oE0 Ax,.( L 5 R o)y
BO*/A) ~(BO?/A N o
+(I~ﬁ) ( ) Ax( ) + AJ{ i+l h-,J ( f) ( E)EJ_(BQVX): =0 ¢.7.9)

v L
The four-point finite-difference form of the continuity equation can be further modified by mul-

tiplying equation (9.7.7) by Ax, to obtain

80 - 07" - gi Av) + (1-0)(Q),, - 0F - 3i Ax)
{9.7.9)

;Z‘ [(A+AO)“‘ +{A+ A ~ 4+ Ag)i - (A+AU)[_H]

l
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Similarly, the momentum equation can be modified by multiplying by Ax; to obtain

Ax; .
EA—;,-(Q-’ "ol - Qf )
BQ2 il 5Q2 JHl ! . " -
vl ; ; A <\ +
AL T] S o R A 9 A SR L ¥ B o e
i+]1 3
§ 45\ F . . ,
BQ* BQ IRV <\ oy
MU E |+ gA] | Wy — b +(S5) A+ (Se ) Ax; | (Bav. ) Axp =0
i+l i
(9.7.10)
where the average values {marked with an overbar) over a reach are defined as
g=PitBin (9.7.11)
5 .
A; = At A (9.7.12)
2
B =Dt B (9.7.13)
2
g, =2+l +2Q"” (9.7.14)
Also,
Ri = Ai/B;i 9.7.15)

for use in Manning’s equation. Manning’s equation may be solved for S;and written in the form
shown below, where the term 10IQ has magnitude @7 and sign positive or negative depending on
whether the flow is downstream or upstream, respectively:
L\ #pe,
(Sf ),— =3473

2.208A: Ri

(9.7.16)

The minor headlosses arising from contraction and expansion of the channel are proporticnal to
the difference between the squares of the downstream and upstream velocities, with a contraction/

expansion loss coefficient K :
E a4, (&)
i 2ghx A Jiy A,

The terms having superscript j in equations (9.7.9} add (9.7.10) are known either from initial
conditions or Erom a solution of the Saint—Venant equations for a previous time line. The terms g,
Ax, B, K,, C,, and V, are known and must be specified independently of the solution. The

j+1 j+1 g j+1 j+1 j+1 py j+1 j+1
unknownterms are O, OFY . B, ATT ALY BT, and BY

(9.7.17)

. However, all the terms can be

expressed as functions of the unknowns 0/, 072, k7" and A" so there are actually four
unknowns. The unknowns are raised to powers other than unity, so equations {9.7.9) and (9.7.10)
are nonlinear equations.

The continnity and momentum equations are considered at each of the N-1 rectangular grids
shown in Figure 9.7.1, between the upstream boundary at { = 1 and the downstream boundary at
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Time ¢
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Figure 9.7.1 The x-¢ solution plane. The finite-difference forms of the Saint—Venant equations are solved
at a discrete number of points (values of the independent variables x and 7) arranged to form the rectangu-
lar grid shown. Lines parallel to the time axis represent locations along the charmel, and those parallel to
the distance axis represent times (from Fread (1974)),

{ = N. This yields 2N-2 equations. There are two unknowns at each of the N grid points (@ and #),
80 there are 2N unknowns in all. The two additional equations required to complete the solution
are supplied by the upstream and downstream boundary conditions. The upstream boundary con-
dition is usually specified as a known inflow hydrograph, while the downstream boundary condi-
tion can be specified as a known'stagc hydrograph, a known discharge hydrograph, or a known
relationship between stage and discharge, such as a rating curve. The U.S. National Weather
Service FLDWAV model {hsp.nws.noaa gov/oh/hrl/rvmech) uses the above to describe implicit
dynamic wave model formulation.

PROBLEMS

9.1.1 The storage-cutflow characteristics for a reservoir are 9.2.2 Rework problem 9.2.1 asstuning the reservoir storage is
given below. Determine the storage-outflow function 28/Af + @  initially 80 X 10° m?.

versus @) for each of the tabulated values using Az = 1.0 hr. Plot 9.2.3 Write a compater program to solve problems 9.2.1 and
a graph of the storage-outflow fimction. 922

Storage (106 m3) 70 80 85 100 U5 924 Rework example 9.1.1 using a 1.5-acre detention basin.
Outflow (m?) ¢ 50 150 350 700 925 Rework example 9.1.1 using 4 tranguiar inflow hydro-

9.2.1 Route the inflow hydrograph given below through the
reservoir with the storage-outflow characteristics given in prob-
lem 3.6.1 using the level pool method. Assume the reservoir has
an initial storage of 70 X 106 m?.

Time (h) 0 1 2 3 4 5 ¢ 7 3
Inflow (m%s) 0 40 60 150 200 300 250 200 180
Time (h) 9 10 11 12 13 14 15 16

Inflow(m’s) 220 320 400 280 190 150 50 o

graph that increases linearly from zero to a peak of 90 cfs at 120
min and then decreases linearly to a zero discharge at 240 min,
Use a 30-min routing interval,

9.2.6 Rework example 9.2.2 using At = 2 hys.
9.2.7 Rework exampie 9.2.2 assuming X = 0.3 hrs.
9.3.1 Rework example 9.2.2 assuning K = 1.4 hr,
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9.3.2 Calcnlate the Muskingum routing X and number of routing
steps for a 1.25-mj long channel. The average cross-section
dimensions for the channel are a base width of 25 ft and an aver-
age depth of 2.0 fi. Assume the channel is rectangular and has
Manning’s n (.04 and a slope of 0.009 fi/ft.

9.3.3 Route the following upstream inflow hydrograph through a
downstream flopd.contro] channel reach using the Muskingum
method. The channel reach has a K=2.5 hr and X = 0.2. Use a
routing interval of 1 hr,

Time (h) 1 2 3 4 5 6 7
Inflow (cfs) 90 140 208 320 440 550 640
Time (h) 8 9 10 11 12 13 14
Inflow {cfs) 680 650 630 570 470 390

Time () i5 16 17 18 19 20

Inflow (cfs) 330 250 180 130 100 90

9.3.4 Use the U.S. Army Corps of Engineers HEC-1 computer
program to solve Problem 9.3.3.
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