CHAPTER

112

3.1

EXAMPLE 5.1

Bracketing Methods

This chapter on roots of equations deals with methods that exploit the fact that a function
typically changes sign in the vicinity of a root. These techniques are called bracketing
methods because two initial guesses for the root are required. As the name imphes, these
guesses must “bracket,” or be on either side of, the root. The particular methods described
herein employ different strategies to systematically reduce the width of the bracket and,
hence, home in on the correct answer.

As a prelude to these techniques, we will briefly discuss graphical methods for depict- -
ing functions and their roots. Beyond their utility for pros iding rough guesses, graphical -

techniques are also useful for visualizing the properties of the functions and the behavior
of the various numerical methods.

GRAPHICAL METHODS

A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make 2
plot of the function and observe where it crosses the x axis. This point, which represents
the x value for which f(x) = 0, provides a rough approximation of the root.

The Graphical Approach

Problem Statement. Use the graphical approach to determine the drag coefficient ¢
needed for a parachutist of mass m = 68.1 kg to have a velocity of 40 m/s after free-falling

for time 7 = 10 s. Note: The acceleration due to gravity is 9.8 m/s”.

Solution. This problem can be solved by determining the root of Eq. (PT2.4) using the &

parameters 1 = 10, g = 9.8, v = 40, and m = 68.1:
9.8(68.1)

c

f(c)

{I 3 (c/68 ||Hi) Ty
or
(1(17._\\'(

f(c) =
i -

bt S (E5.1.1)34

AT RS 2l

S AR

nction |
keting
. these
cribed |
‘tand, W ;

lepict-
phical
havior |

1ake a 3
esents 3

ient ¢
alling &

wthe 3§

s1)

npute 4

5.1 GRAPHICAL METHODS

< f(c)

4 115
8 17.653
12 ¢

16 2

20 8.401

These points are plotted in Fig. 5.1. The resulting curve crosses the ¢ axis between 12 and

16. Visual inspection of the plot provides a rough estimate of the root of 14.75. The valid-
ity of the graphical estimate can be checked by substituting it into Eq. (E5.1.1) to yield

667.38

14.75

f(14.75) = (1 — £7014688304.75)) _ 40 = 0.059

which is close to zero. It can also be checked by substituting it into Eq. (PT2.4) along with
the parameter values from this example to give
~9.8(68.1)

v (
14.75

— e~(4T5/68.010) _ 49 059

which is very close to the desired fall velocity of 40 m/s.

FIGURE 5.1

The graphical approach for determining the roots of an equation.

fle)

ot

20 —

114

BRACKETING METHODS

FIGURE 5.2

llustration of a number of
general ways that a root may
occur in an inferval prescribed
by a lower bound x; and an
upper bound x,. Parts (a) and
(c) indicate that if both f(x) and
f(x.) have the same sign, either
there will be no roots or there
will be an even number of roots
within the interval. Parts (b) and
(d) indicate that if the function
has different signs at the end
points, there will be an odd
number of roots in the inferval.

Graphical techniques are of limited practical value because they are not precise. How-

ever, graphical methods can be utilized to obtain rough estimates of roots. These cstimale§
can be employed as starting guesses for numerical methods discussed in this and the next .
chapter.
Aside from providing rough estimates of the root, graphical interpretations are impor-*
tant tools for understanding the properties of the functions and anticipating the pitfalls of .
the numerical methods. For example, Fig. 5.2 shows a number of ways in which roots can
occur (or be absent) in an interval prescribed by a lower bound x; and an upper bound x,,
Figure 5.2b depicts the case where a single root is bracketed by negative and positive values
of f(x). However, Fig. 5.2d, where f(x)) and f(x,) are also on opposite sides of the x axis,-z
shows three roots occurring within the interval. In general, if f(x)) and f(x,) have opposile'ijf
signs, there are an odd number of roots in the interval. As indicated by Fig. 5.2a and ¢, if
S(xp) and f(x,) have the same sign, there are either no roots or an even number of rools
between the values. 5
Although these generalizations are usually true, there are cases where they do not
hold. For example, functions that are tangential to the x axis (Fig. 5.3a) and discontinuo
functions (Fig. 5.3b) can violate these principles. An example of a function that is tangen
tial to the axis is the cubic equation fix) = (x — 2)(x — 2)(x — 4). Notice that x = 2 makes
two terms in this polynomial equal to zero. Mathematically, x = 2 is called a multiple roo
Al the end of Chap. 6, we will present techniques that are expressly designed to locate
multiple roots. 1
The existence of cases of the type depicted in Fig. 5.3 makes it difficult to develop gen-_;j
eral computer algorithms guaranteed to locate all the roots in an interval. However, when:
used in conjunction with graphical approaches, the methods described in the fo]]owing%’

FIGURE 5.3

lllustration of some exceptions to the general cases depicted in
Fig. 5.2. (a) Multiple root that occurs when the function is tangen-
fial to the x axis. For this case, although the end points are of op-
posite signs, there are an even number of axis intersections for
the interval. (b) Discontinuous function where end points of oppo-
site sign bracket an even number of roots. Special siralegies are
required for determining the roots for these cases.

5.1 GRAPHICAL METHODS 115

_____.

.. Howe
timﬂ e
he next;

EXAMPLE 5.2
impor.
falls ofr
ots Canl
und x, §
* Valueg
X axis |
Pposite
nd ¢, if
of roots‘

do not:

sections are extremely useful for solving many roots of equations problems confronted rou-
tinely by engineers and applied mathematicians.
Use of Computer Graphics to Locate Roots

Problem Statement. Computer graphics can expedite and improve your efforts to locate
roots of equations. The function

Jf(x) = sin 10x + cos 3x

has several roots over the range x = 0 to x = 5. Use computer graphics to gain insight into
the behavior of this function.

Solution. Packages such as Excel and MATLAB software can be used to generate plots.
Figure 5.4a is a plot of f(x) from x = 0 to x = 5. This plot suggests the presence of several
roots, including a possible double root at about x = 4.2 where f(x) appears to be tangent to

tinuous
tangen-
- makes?
le root
» locate!

FIGURE 5.4

Hhe progressive enlargement of f{x} = sin 10x + cos 3x by the computer. Such interactive graphics
ermits the analyst to determine that two distinct roots exist between x = 4.2 and x = 4.3.

op gen-
r, when
llowing

43

116

BRACKETING METHODS

the x axis. A more detailed picture of the behavior of f(x) is obtained by changing the plot-4
ting range from x = 3 tox = 5, as shown in Fig. 5.4b. Finally, in Fig. 5.4c, the vertical sca
is narrowed further to f(x) = —0.15 to f(x) = 0.15 and the horizontal scale is narrowed to
x =4.2 10 x=4.3. This plot shows clearly that a double root does not exist in this region §|
and that in fact there are two distinct roots at about x = 4.23 and x = 4.26. =
Computer graphics will have great utility in your studies of numerical methods. This?
capability will also find many other applications in your other classes and professional &
activities as well. 4

5.2

THE BISECTION METHOD

When applying the graphical technique in Example 5.1, you have observed (Fig. 5.1) that}
f(x) changed sign on opposite sides of the root. In general, if f(x) is real and continuous in
the interval from x; to x, and f(xp) and f(x,) have opposite signs, that is, 3
S fix,) <0 (5.1
then there is at least one real root between x;and x,,. $
Incremental search methods capitalize on this observation by locating an interval -
where the function changes sign. Then the location of the sign change (and consequently,
the root) is identified more precisely by dividing the interval into a number of subintervals.
Each of these subintervals is searched to locate the sign change. The process is repeale"'
and the root estimate refined by dividing the subintervals into finer increments. We will
return to the general topic of incremental searches in Sec. 5.4. '
The bisection method, which is alternatively called binary chopping, interval halving,#
or Bolzano’s method, is one type of incremental search method in which the interval is al-*
ways divided in half. If a function changes sign over an interval, the function value at the?
midpoint is evaluated. The location of the root is then determined as lying at the midpoint:
of the subinterval within which the sign change occurs. The process is repeated to obtain
refined estimates. A simple algorithm for the bisection calculation is listed in Fig. 5.5, and:
a graphical depiction of the method is provided in Fig. 5.6. The following example goes
through the actual computations involved in the method. 3

FIGURE 5.5

—

Step 1: Choose lower x; and upper x, guesses for the root such that the funclion changes
sign over the interval. This can be checked by ensuring that f(x)f(x,) < O.
Step 2: An estimate of the oot x, is determined by

N+ X
X

Step 3: Make the following evaluations 1o determine in which subinterval the oot lies-
(0) If fixif(x) < O, the root lies in the lower subinterval Therefore, set x,= x, and
return 1o step 2
(b) If fix)fix) > O, the root lies in the upper subinterval. Therefore, set xj= x, and
return fo slep 2.
(c} If fix)fix) = O, the root equals x,: terminate the compuiation.

5.2 THE BISECTION METHOD 117

plot-

scale |
ed to
egion
- This
sional |
th 1
)u " FIGURE 5.6
us in graphical depiction of the
4 isection method. This plot
(5.1) § forms 1o the first three itera-
4 ns from Example 5.3.
erval
ently, 3
rvals, Bisection
eated - e :
> will'$ Problem Statement. Use bisection to solve the same problem approached graphically in
i Example 5.1.
Ying, Solution. The first step in bisection is to guess two values of the unknown (in the present
is al- : problem, ¢) that give values for f(c) with different signs. From Fig. 5.1, we can see that the
at t_he 3 function changes sign between values of 12 and 16. Therefore, the initial estimate of the
point 2 root x, lies at the midpoint of the interval
btain
;. and 4 ,rr=12+16:l4
goes 4 y
This estimate represents a true percent relative error of &, = 5.3% (note that the true value
—_— of the root is 14.7802). Next we compute the product of the function value at the lower
e bound and at the midpoint:
es f(12) f(14) = 6.067(1.569) = 9.517
which is greater than zero, and hence no sign change occurs between the lower bound and
the midpoint. Consequently, the root must be located between 14 and 16. Therefore, we
create a new interval by redefining the lower bound as 14 and determining a revised root
estimate as
14416
'Id Xp = —+ =13
.
d ;
: which represents a true percent error of &, = 1.5%. The process can be repeated to obtain
refined estimates. For example,

f(14) f(15) = 1.569(—0.425) = —0.666

G

118

BRACKETING METHODS

EXAMPLE 5.4

Therefore, the root is between 14 and 15. The upper bound is redefined as 15, and the 1
estimate for the third iteration is calculated as ;
14 + 15

A = =

2

which represents a percent relative error of & = 1.9%. The method can be repeated uf
the result is accurate enough to satisfy your needs

In the previous example, you may have noticed that the true error does not decre
with each iteration. However, the interval within which the root is located is halved wi
each step in the process. As discussed in the next section. the interval width provides @
exact estimate of the upper bound of the error for the bisection method. 3

5.2.1 Termination Criteria and Error Estimates

We ended Example 5.3 with the statement that the method could be continued to obtaiif
refined estimate of the root. We must now develop an objective criterion for deciding whl
to terminate the method. :
An initial suggestion might be to end the calculation when the true error falls beld
some prespecified level. For instance, in Example 5.3, the relative error dropped from 3
to 1.9 percent during the course of the computation. We might decide that we should €]
minate when the error drops below, say, 0.1 percent. This strategy is flawed because
error estimates in the example were based on knowledge of the true root of the functi
This would not be the case in an actual situation because there would be no point in us
the method if we already knew the root. k-
Therefore. we require an error estimate that is not contingent on foreknowledge of
root. As developed previously in Sec. 3.3, an approximate percent relative error &, can B
calculated, as in [recall Eq.43.5)]
new __ _old
r g
i it

X
£ =

100% (53

where x*" is the root for the present iteration and x2M is the root from the previous itefd
tion. The absolute value is used because we are usually concerned with the magnitude
&, rather than with its sign. When &, becomes less than a prespecified stopping criterion &
the computation is terminated. ;

Error Estimates for Bisection 3

Problem Statement. Continue Example 5.3 until the approximate error falls below é
stopping criterion of &; = 0.5%. Use Eq. (5.2) to compute the errors. 3

Solution. The results of the first two iterations for Example 5.3 were 14 and 15. Subs _
tuting these values into Eq. (5.2) yields

15— 14 £ R
——— 1 100% = 6.667%
b

I‘L.li =

5.2 THE BISECTION METHOD 119

Recall that the true percent relative error for the root estimate of 15 was 1.5%. Therefore,
&4 is greater than &,. This behavior is manifested for the other iterations:

Iteration x| M Xy £q (%) £y (%)
1 12 16 14 3. 279
2 14 16 15 6.667 1.487
3 14 15 14.5 3.448 1.896
4 14.5 o 14.75 1.695 0.204
L 14.75 15 14.875 0.840 0.641
6 14.75 14.875 148125 0.422 0.219

Thus, after six iterations &, finally falls below &, = 0.5%, and the computation can be
terminated.

These results are summarized in Fig. 5.7. The “ragged” nature of the true error is due
to the fact that, for bisection, the true root can lie anywhere within the bracketing interval.
The true and approximate errors are far apart when the interval happens to be centered on
the true root. They are close when the true root falls at either end of the interval.

Although the approximate error does not provide an exact estimate of the true error,
Fig. 5.7 suggests that &, captures the general downward trend of &,. In addition, the plot ex-
hibits the extremely attractive characteristic that &, is always greater than &,. Thus, when

IGURE 5.7
s for the bisection method.
and estimated errors are
versus the number of
ions.

120

BRACKETING METHODS

&, falls below &, the computation could be terminated with confidence that the root ise!
known to be at least as accurate as the prespecified acceptable level.

Although it is always dangerous to draw general conclusions from a single example
it can be demonstrated that &, will always be greater than ¢, for the bisection method. Thig|
is because each time an approximate root is located using bisection as x, = (x; + x,)/ 28]
we know that the true root lies somewhere within an interval of (x, —xp)/2 = Ax/f
Therefore, the root must lie within +Ax/2 of our estimate (Fig. 5.8). For instance, wh
Example 5.3 was terminated, we could make the definitive statement that

x=145+05

Because Ax/2 = xP* — x4 (Fig. 5.9), Eq. (5.2) provides an exact upper bound onli
the true error. For this bound to be exceeded, the true root would have to fall outside hée
bracketing interval, which, by definition, could never occur for the bisection method. A
illustrated in a subsequent example (Example 5.7), other root-locating techniques do nof
always behave as nicely. Although bisection is generally slower than other methods, th

FIGURE 5.8

Three ways in which the interval
may bracket the rool. In [a) the
true value lies at the center of
the interval, whereas in (b) and
{c] the true valve lies near the
extreme. Notice that the
discrepancy between the true
value and the midpoint of the in-
terval never exceeds half the
interval length, or Ax/2.

FIGURE 5.9

Graphical depiction of why the
error estimate for bisection
(Ax/2) is equivalent 1o the root
eslimate for the present iferation
{x7**) minus the root estimate for
the previous iteration (x4

fid ST e ‘
Fy el et y
| R =¥
; yoid | i
g ; R o
- gty
I e ! BRI
Present iteration :~—“'—’—~—1
: s I)
%] k
1 1

& root jg

:xan‘npk::i
10d. Thig:
+x)/2
= A_xl,’z_
'€, Whep

ound op,
tside
thod. Ag
s do ngt
10ds, the!

5.2 THE BISECTION METHOD 121

neatness of its error analysis is certainly a positive aspect that could make it attractive for
certain engineering applications.

Before proceeding to the computer program for bisection, we should note that the
relationships (Fig. 5.9)

Xy — Xj
new old _ “u
i ey s
and
new __ X + X
S

can be substituted into Eq. (5.2) to develop an alternative formulation for the approximate
percent relative error

Xy — Xp

100% (5.3)

Eq =

X A%y

This equation yields identical results to Eq. (5.2) for bisection. In addition, it allows us to
calculate an error estimate on the basis of our initial guesses—that is, on our first itera-
tion. For instance, on the first iteration of Example 5.2, an approximate error can be
computed as
16 — 12
Ea 7 o7z | 100% =14.29%
16 + 12
Another benefit of the bisection method is that the number of iterations required to at-
tain an absolute error can be computed a priori—that is, before starting the iterations. This
can be seen by recognizing that before starting the technique, the absolute error is

Eg:x,?—x,o:AxO

where the superscript designates the iteration. Hence, before starting the method, we are at

the “zero iteration.” After the first iteration, the error becomes

1 2"
A g

Because each succeeding iteration halves the error, a general formula relating the error and

the number of iterations, n, is

p Ax?
BY = = (5.4)
If E, 4 is the desired error, this equation can be solved for
log(Ax%/E, Ax?
g M ok 10g2(.) (5.5)
log 2 ",

Let us test the formula. For Example 5.4, the initial interval was Axy = 16 — 12 = 4.
After six iterations, the absolute error was
14875 — 14.75]
e

E, = 0.0625

122

BRACKETING METHODS

We can substitute these values into Eq. (5.5) to give

log(4/0.0625)
n=——"=¢6
log 2

Thus, if we knew beforehand that an error of less than 0.0625 was acceptable, the formula &
tells us that six iterations would yield the desired result. 3
Although we have emphasized the use of relative errors for obvious reasons, there will |
be cases where (usually through knowledge of the problem context) you will be able
specify an absolute error. For these cases, bisection along with Eq. (5.5) can provide a3
useful root-location algorithm. We will explore such applications in the end—of-chapte[_
problems. '

5.2.2 Bisection Algorithm

The algorithm in Fig. 5.5 can now be expanded to include the error check (Fig. 5.10). The #
algorithm employs user-defined functions to make root location and function evaluation 3
more efficient. In addition, an upper limit is placed on the number of iterations. Finally, an &
error check is included to avoid division by zero during the error evaluation. Such would:
be the case when the bracketing interval is centered on zero. For this situation Eq. (5.2) be-
comes infinite. If this occurs, the program skips over the error evaluation for that iteration. §
The algorithm in Fig. 5.10 is not user-friendly; it is designed strictly to come up with §
the answer. In Prob. 5.14 at the end of this chapter, you will have the task of making it eas- §
ier to use and understand. ;

FIGURE 5.10
Pseudocode for function to
implement bisection.

FUNCTION Bisect(x1, xu, es, imax, xr, iter, ea)
iter = 0
oo
xrold-= xr
xr= (x1 + xu) /2
iter = iter + 1
IF xr # 0 THEN
ea = ABS((xr — xrold) / xr) + 100
END IF
test = f(x1) > f(xr)
IF test < 0 THEN

XU = Xr
ELSE IF test > O THEN
Xt = xr
ELSE
ea =0
END IF
IF ea < es OR iter = imax EXIT
END DO

Bisect = xr
END Bisect

nula

wil]
le to -
de g
apter

5.2 THE BISECTION METHOD 123

5.2.3 Minimizing Function Evaluations

The bisection algorithm in Fig. 5.10 is just fine if you are performing a single root
evaluation for a function that is easy to evaluate. However, there are many instances in
engineering when this is not the case. For example, suppose that you develop a computer
program that must locate a root numerous times. In such cases you could call the
algorithm from Fig. 5.10 thousands and even millions of times in the course of a single
run.

Further, in its most general sense, a univariate function is merely an entity that returns
a single value in return for a single value you send to it. Perceived in this sense, functions
are not always simple formulas like the one-line equations solved in the preceding exam-
ples in this chapter. For example, a function might consist of many lines of code that could
take a significant amount of execution time to evaluate. In some cases, the function might
even represent an independent computer program.

Because of both these factors, it is imperative that numerical algorithms minimize
function evaluations. In this light, the algorithm from Fig. 5.10 is deficient. In particular,
notice that in making two function evaluations per iteration, it recalculates one of the func-
tions that was determined on the previous iteration.

Figure 5.11 provides a modified algorithm that does not have this deficiency. We have
highlighted the lines that differ from Fig. 5.10. In this case, only the new function value at

URE 5.11

docode for bisection sub-
fogram which minimizes
nclion evaluations.

FUNCTION Bisect(xl, xu, es, imax, xr, iter, ea)
iter = 0
fl.= f(x1)
Do
xrold = xr
xr = (x1 + xu) [2
i =FExr)
iter = iter + 1
IF xr # 0 THEN
ea = ABS((xr — xrold) / xr) = 100
END IF
test = fl £fr
IF test < 0 THEN

X '=xr
ELSE IF test > 0 THEN
xl = xr
“fl=fr
ELSE
ea =0
END IF
IF ea < es OR iter = imax EXIT
END DO

Bisect = xr
END Bisect

124

BRACKETING METHODS

the root estimate is calculated. Previously calculated values are saved and merely reassigneg
as the bracket shrinks. Thus, n + 1 function evaluations are performed, rather than 2n. T

THE FALSE-POSITION METHOD

Although bisection is a perfectly valid technique for determining roots, its “brute-force” ap
proach is relatively inefficient. False position is an alternative based on a graphical insighi

A shortcoming of the bisection method is that, in dividing the interval from X7 10 X, infg
equal halves, no account is taken of the magnitudes of f(x)) and f(x,). For example, if f{x]
is much closer to zero than f(x,), it is likely that the root is closer to x; than to x, (Fig. 5.12)
An alternative method that exploits this graphical insight is to join f(x;) and f(x,) by
straight line. The intersection of this line with the X axis represents an improved estimate
the root. The fact that the replacement of the curve by a straight line gives a “false positio it
of the root is the origin of the name, method of false position, or in Latin, regula falsi. It _ ; guesses x,
also called the linear interpolation method. -

Using similar triangles (Fig. 5.12), the intersection of the straight line with the x
can be estimated as

Sixp) e 6457,
-8 XX

which can be solved for (see Box 5.1 for details).

b S)

- 1
e fe) O

FIGURE 5.12

A graphical depiction of the
method of false position. Similar
triangles used to derive the
formula for the method are

shaded

5.3 THE FALSE-POSITION METHOD 125

Box 5.! y [_)erivotion of the Method of False P_osition

«s-multiply Eg. (5.6) to yield then adding and subtracting x, on the right-hand side:

IJ)(Xr = JC,,) =2 f(xu)(‘rr s If) 5= Xu f(-"[) e Xy f(xu,?
Fx) — fix,) Sfx) = flx,)

ect terms and rearrange:

ight [ftx) — fx)] = xu fa) — 2 flxa) Collecting terms yields
1 En :1 byf(xi) _f(‘r"): Gt Xy f(xu) 2 Ilf(—ra)
Fool Y) -) fi) — fix)
X JOx) — % f(x) &
12)3 ik Lo LA [e (B5.1.1)
by af fx) — fxa)
ite of} is one form of the method of false position. Note that it allows pTE T S — x,)
tion”s computation of the root x, as a function of the lower and upper fx) — flx,)
It ' gsses x; and x,.. It can be put in an alternative form by expanding 1. 4o same as Eq. (5.7). We use this form because it involves
g one less function evaluation and one less multiplication than
axis| xS fl) Eq. (B5.1.1). In addition, it is directly comparable with the secant
e = J) = fix) o) = flx,) method which will be discussed in Chap. 6.

This is the false-position formula. The value of x, computed with Eq. (5.7) then replaces
whichever of the two initial guesses, x; or x,, yields a function value with the same sign as
f(x;). In this way, the values of x; and x, always bracket the true root. The process is
repeated until the root is estimated adequately. The algorithm is identical to the one for bi-
section (Fig. 5.5) with the exception that Eq. (5.7) is used for step 2. In addition, the same
stopping criterion [Eq. (5.2)] is used to terminate the computation.

False Position

Problem Statement. Use the false-position method to determine the root of the same
equation investigated in Example 5.1 [Eq. (E5.1.1)].

Solution. As in Example 5.3, initiate the computation with guesses of x; = 12 and
X,=16.

First iteration:

x=12 f(x) =6.0699
x, =16 f(x,) = —2.2688
—2.2688(12 — 16)

B — 149113
5 6.0669 — (—2.2688)

which has a true relative error of 0.89 percent.
Second iteration:

SO flx,) = —1.5426

126

BRACKETING METHODS

Therefore, the root lies in the first subinterval, and x, becomes the upper limit for the neg
iteration, x, = 14.9113: i

xi =12 fx) = 6.0699
X =149113 f(x,) = —0.2543

—0.2543(12 — 14.9113
x = 149113 — : =) = 14.7942
6.0669 — (—0.2543)

which has true and approximate relative errors of 0.09 and 0.79 percent. Additional iters
tions can be performed to refine the estimate of the roots. 3

A feeling for the relative efficiency of the bisection and false-position methods can b
appreciated by referring to Fig. 5.13, where we have plotted the true percent relative EITORS
for Examples 5.4 and 5.5. Note how the error for false position decreases much faster thag
for bisection because of the more efficient scheme for root location in the false-positiof
method.

Recall in the bisection method that the interval between x; and x, grew smaller during
the course of a computation. The interval, as defined by Ax/2 = |x, — x;]/2 for the fi
iteration, therefore provided a measure of the error for this approach. This is not the casg

FIGURE 5.13

Comparison of the relative
errors of the bisection and the
talse-position methods.

T g B

_ Bisection:

10" F

: ' False position
102 i

True percent relative error

103 |-
100X
[t s dEin i
0 3 6

lterations

:an be §
errors -
r than -
sition

lllring
e ﬁrst_l'_
2 case.

5.3 THE FALSE-POSITION METHOD 127

for the method of false position because one of the initial guesses may stay fixed through-
out the computation as the other guess converges on the root. For instance, in Example 5.6
the lower guess x; remained at 12 while x, converged on the root. For such cases. the inter-
val does not shrink but rather approaches a constant value.

Example 5.6 suggests that Eq. (5.2) represents a very conservative error criterion. In
fact, Eq. (5.2) actually constitutes an approximation of the discrepancy of the previous
iteration. This is because for a case such as Example 5.6, where the method is converging
quickly (for example, the error is being reduced nearly an order of magnitude per
iteration), the root for the present iteration x™¥ is a much better estimate of the true value
than the result of the previous iteration x™. Thus, the quantity in the numerator of
Eq. (5.2) actually represents the discrepancy of the previous iteration. Consequently, we
are assured that satisfaction of Eq. (5.2) ensures that the root will be known with greater
accuracy than the prescribed tolerance. However, as described in the next section, there
are cases where false position converges slowly. For these cases, Eq. (5.2) becomes unre-
liable, and an alternative stopping criterion must be developed.

5.3.1 Pitfalls of the False-Position Method

Although the false-position method would seem to always be the bracketing method of

preference, there are cases where it performs poorly. In fact, as in the following example,

there are certain cases where bisection yields superior results.

A Case Where Bisection Is Preferable to False Position

Problem Statement. Use bisection and false position to locate the root of
flx)=x""—1

between x = 0 and 1.3.

Solution. Using bisection, the results can be summarized as

Iteration x| X, x, £q (%) £y (%)
1 0 3 0.65 100.0 35
2 0.65 1.3 0.975 33.3 2.3
3 0.975 137 14.3 13.8
4 0.975 1.1375 1.05625 L7 b
5 0.975 1.05625 1.015625 4.0 1.6

Thus, after five iterations, the true error is reduced to less than 2 percent. For false position,
a very different outcome is obtained:

Iteration x| Xy x, £q (%) £4 (%)
] 0 133 0.09430 Q0.6
2 0.09430 3 0.18176 48.1 81.8
3 0.18176 }i3 0.26287 309 P
4 0.26287 I 0.33811 22.3 66.2
3 0.33811 1:3 0.40788 7 59.2

128

BRACKETING METHODS

FIGURE 5.14

Plot of fx) = x'® — 1, illustrating slow convergence of the false-position method.

After five iterations, the true error has only been reduced to about 59 percent. In addi3
tion, note that £, < ¢&,. Thus, the approximate error is misleading. Insight into these resul
can be gained by examining a plot of the function. As in Fig. 5.14, the curve violates
premise upon which false position was based—that is. if f(x;) is much closer to zero tham
f(x,), then the root is closer to x; than to X, (recall Fig. 5.12). Because of the shape of
present function, the opposite is true.]

-

The forgoing example illustrates that blanket generalizations regarding root-location
methods are usually not possible. Although a method such as false position is often SUL
rior to bisection, there are invariably cases that violate this general conclusion. Thercforc'
in addition to using Eq. (5.2). the results should always be checked by substituting the roo§
estimate into the original equation and determining whether the result is close to zero. Sucf!
a check should be incorporated into all computer programs for root location. e

The example also illustrates a major weakness of the false-position method: its onés
sidedness. That is, as iterations are proceeding, one of the bracketing points will tend 1

n addi- 2
results
ites the
ro than :
: of the

Jcation |
1 supe-
refore,

he root

». Such 3

ts one- -
tend to

5.3 THE FALSE-POSITION METHOD 129

stay fixed. This can lead to poor convergence, particularly for functions with significant
curvature. The following section provides a remedy.

5.3.2 Modified False Position

One way to mitigate the “one-sided” nature of false position is to have the algorithm detect
when one of the bounds is stuck. If this occurs, the function value at the stagnant bound can
be divided in half. This is called the modified false-position method.

The algorithm in Fig. 5.15 implements this strategy. Notice how counters are used to
determine when one of the bounds stays fixed for two iterations. If this occurs, the function
value at this stagnant bound is halved.

The effectiveness of this algorithm can be demonstrated by applying it to Example 5.6.
If a stopping criterion of 0.01% is used, the bisection and standard false-position methods

RE 5.15
Pseudocode for the modified

lse-position method.

FUNCTION ModFalsePos(x1, xu, es, imax, xr, iter, ea)
iter = 0
fl = fixl)
fu = f(xu)
Do
xrold = xr
e =0 —fu* (xl = xu)/ (fl1 — fu)
fr = f(xr)
iter = iter + 1
IF xr <> 0 THEN
ead '= Abs((xr — xrold) /! xr) * 100
END IF
test = fl * fr
IF test < 0 THEN

XU = Xr
fu = f(xu)
ju =0

il =il +.1
If il=2THEN fl = f1 [2
ELSE IF test > 0 THEN

xl = xr
fl = f(x1)
¥l =1}

iu=iu+1
IF iju= 2 THEN fu= fu l 2

ELSE
ea =0
END IF
IF ea < es OR iter = imax THEN EXIT
END DO

ModFalsePos = xr
END ModFalsePos

130

BRACKETING METHODS

5.4

would converge in 14 and 39 iterations, respectively. In contrast, the modified falses
position method would converge in 12 iterations. Thus, for this example, it is somewh

more efficient than bisection and is vastly superior to the unmodified false-positiog
method. :

INCREMENTAL SEARCHES AND DETERMINING
INITIAL GUESSES

Besides checking an individual answer, you must determine whether all possible roots have
been located. As mentioned previously, a plot of the function is usually very useful in gu
ing you in this task. Another option is to incorporate an incremental search at the beginning
of the computer program. This consists of starting at one end of the region of interest and!
then making function evaluations at small increments across the region. When the function
changes sign, it is assumed that a root falls within the increment. The x values at the
ginning and the end of the increment can then serve as the initial guesses for one of the!
bracketing techniques described in this chapter. 4
A potential problem with an incremental search is the choice of the increment lengt

If the length is too small, the search can be very time consuming. On the other hand, if t
length is too great, there is a possibility that closely spaced roots might be missed:
(Fig. 5.16). The problem is compounded by the possible existence of multiple roots. A par=
tial remedy for such cases is to compute the first derivative of the function f'(x) at the}
beginning and the end of each interval. If the derivative changes sign, it suggests that a
minimum or maximum may have occurred and that the interval should be examined more]
closely for the existence of a possible root. 3
Although such modifications or the employment of a very fine increment can alleviatél
the problem, it should be clear that brute-force methods such as incremental search are nots
foolproof. You would be wise to supplement such automatic techniques with any others
information that provides insight into the location of the roots. Such information can be§
found in plotting and in understanding the physical problem from which the equation
originated.]

FIGURE 5.16

Cases where roots could be
missed because the increment
length of the search procedure
is foo \Lnge Note that the last
root on the right is multiple and
would be missed regardless of
increment length.

{ ' ;
a
(¢
. At NI W ST o) DSl T mﬂ};'_‘f m
et Bl ;un m; Jdeaitiey wl lanoten saoiwnd OF brg bi i s’ mew 5
‘_ prndte & 4 oteranes gl ol cull ascnmds £ w agwraos Blooss Bodises)
r‘*iﬂ *:aﬂzhmim i wi woheges WYY A b !"W‘ s rmamﬂs m
{
,:m_mwmﬁmtﬁmvmhmnuﬁﬁmm
ﬁummﬁmtmmﬂﬁhsmmm
ik sl o badivoash
£ ' e m@n

o i #oe: Siciegnn s

	Picture 001
	Picture 011
	Picture 002
	Picture 012
	Picture 003
	Picture 013
	Picture 004
	Picture 014
	Picture 005
	Picture 015
	Picture 006
	Picture 016
	Picture 007
	Picture 017
	Picture 008
	Picture 018
	Picture 009
	Picture 019
	Picture 010
	Picture 020

