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Open Methods

For the bracketing methods in the previous chapter, the root is located within an interval

prescribed by a lower and an upper bound. Repeated application of these methods alw ays

results in closer estimates of the true value of the root. Such methods are said to be con-

vergent because they move closer to the truth as the computation progresses (Fig. 6.1a).

In contrast, the open methods described in this chapter are based on formulas that
require only a single starting value of x or two starting values that do not necessarily bracket

FIGURE 6.1
Graphical depiction of the flx
fundamental difference N

the (a] bracketing and (b)
{c) open methods for roct
location. In (a), which is the
bisection method, the root is
consirained within the interval
prescribed by x, and x,. In
contrast, for the open method
depa‘c:ied in [133 and (¢
formula is used to project from
X to x;;.1 in an iterative fashion

Thus, the method can either (b}
diverge or (c] converge rapidly
depending on the value of the
initial guess

)

flx)

x (@) e
i, g e |
X "
g, o

Xxp - 4

22

flx)

(b)

133
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6.1

EXAMPLE 6.1

the root. As such, they sometimes diverge or move away from the true root as r
computation progresses (Fig. 6.1b). However, when the open methods converge (Fig. 6.1
they usually do so much more quickly than the bracketing methods. We will begin our dig
cussion of open techniques with a simple version that is useful for illustrating their gener}
form and also for demonstrating the concept of convergence.

SIMPLE FIXED-POINT ITERATION

As mentioned above, open methods employ a formula to predict the root. Such a formul}
can be developed for simple fixed-point iteration (or, as it is also called. one-point iterat
or successive substitution) by rearranging the function f(x) = 0 so that x is on the left-h
side of the equation:

x = g(x) (6.1

This transformation can be accomplished either by algebraic manipulation or by simpl
adding x to both sides of the original equation. For example,

x*=2x4+3=0
can be simply manipulated to yield

x2 43
X = — =
-

&

whereas sin x = 0 could be put into the form of Eq. (6.1) by adding x to both sides to yielg
X =sinx +x.

The utility of Eq. (6.1) is that it provides a formula to predict a new value of x as d
function of an old value of x. Thus. given an initial guess at the root x;, Eq. (6.1) can be u
o compute a new estimate x;;, as expressed by the iterative formula

Xi+1 :g("x) (6

As with other iterative formulas in this book, the approximate error for this equation can b&
determined using the error estimator [Eq. (3.5)]: F

oLy == p
5 Bt T

Eq =

Xit1

Simple Fixed-Point Iteration
Problem Statement.  Use simple fixed-point iteration to locate the root off{x) =22
Solution.  The function can be separated directly and expressed in the form of Eq. (6.2) 85

Xigj g
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Starting with an initial guess of xy = 0, this iterative equation can be applied to compute

pE

i X; £q (%) £4 (%)
0] { 100.0

| 100.0 76.3

2 171.8 351

3 46.9 22

4 8.3 11.8

5 0.606244 17.4 6.89
6 0.545396 I 3.83
7 0.579612 5.90 2.20
8 0.560115 3.48 1.24
Q 0.571143 1.93 0.705
10 0.564879 i1 0.399

Thus, each iteration brings the estimate closer to the true value of the root: 0.56714329.

6.1.1 Convergence

Notice that the true percent relative error for each iteration of Example 6.1 is roughly pro-
portional (by a factor of about 0.5 to 0.6) to the error from the previous iteration. This prop-
erty, called linear convergence, is characteristic of fixed-point iteration.

Aside from the “rate” of convergence, we must comment at this point about the
“possibility” of convergence. The concepts of convergence and divergence can be depicted
graphically. Recall that in Sec. 5.1, we graphed a function to visualize its structure and be-
havior (Example 5.1). Such an approach is employed in Fig. 6.2a for the function f(x) =
e * — x. An alternative graphical approach is to separate the equation into two component
parts, as in

fi(x) = fo(x)
Then the two equations

= filx) (6.3)
and

y2 = falx) (6.4)

can be plotted separately (Fig. 6.2b). The x values corresponding to the intersections of
these functions represent the roots of f(x) = 0.

The Two-Curve Graphical Method

Problem Statement.  Separate the equation e * — x = 0 into two parts and determine its
root graphically.

Solution.  Reformulate the equation as y; = x and y, = ¢™*. The following values can
be computed:
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= n y2
) O 0.0 1 .OOX
0.2 0.2 )R]
0.4 0.4 {
0.6 0.6

8 0.8
1. 1.0

These points are plotted in Fig. 6.2b. The intersection of the two curves indicates a rog
estimate of approximately x = 0.57, which corresponds to the point where the single curi
in Fig. 6.2a crosses the x axis.

FIGURE 6.2
Two alternative graphical methods for determining the root of f(x) = e—* — x (a) Root at the
point where it crosses the x axis;: [b) root at the intersection of the component functions

f®

(a)
f(x)

f](-r) =X

folx)=e*

Root

(b)
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The two-curve method can now be used to illustrate the convergence and divergence
of fixed-point iteration. First, Eq. (6.1) can be re-expressed as a pair of equations y; = x
and y; = g(x). These two equations can then be plotted separately. As was the case with
Egs. (6.3) and (6.4), the roots of f(x) =0 correspond to the abscissa value at the intersec-
tion of the two curves. The function y, = x and four different shapes for y; = g(x) are plot-
ted in Fig. 6.3.

For the first case (Fig. 6.3a), the initial guess of x; is used to determine the correspond-
ing point on the y; curve [xq, g(xp)]. The point (x,, x,) is located by moving left horizontally
to the y; curve. These movements are equivalent to the first iteration in the fixed-point
method:

ic‘atcs a oo
xp = g(xg)

Thus, in both the equation and in the plot, a starting value of x; is used to obtain an estimate
of x;. The next iteration consists of moving to [xy, g(x;)] and then to (x3, x,). This iteration

FIGURE 6.3 T St i
G'raphicol depiction of (a) and ¥ Aees i 5
{b) convergence and (c] and (d) 5 she s

divergence of simple fixed-point
iteration. Graphs [a) and (c] are
called monotone patterns
whereas (b} and (d) are called
oscillating or spiral patterns
Nole that convergence occurs

when |g'(x)] < I.

Y. =X

SR

@orena
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Box 6.1

From studying Fig. 6.3, it should be clear that fixed-point iteration
converges if, in the region of interest, |g'(x)| < 1. In other words.
convergence occurs if the magnitude of the slope of g(x) is less
than the slope of the line f{x) = x. This observation can be demon-
strated theoretically. Recall that the iterative equation is

Xig) = g(‘ri)
Suppose that the true solution is
xr = g(x,)
Subtracting these equations yields
(xi)

The derivative mean-value theorem (recall Sec. 4.1.1) states that if
a function g(x) and its first derivative are continuous over an inter-
val @ < x < b, then there exists at least one value of x — & within
the interval such that

Xr — Xi41 :g(xr)fg (B6.1.1)

by —
g = w (B6.1.2)

The right-hand side of this equation is the slope of the line joining
g(a) and g(b). Thus, the mean-value theorem states that there is at
least one point between a and b that has a slope, designated by g/ (),
which is parallel to the line joining g(a) and g(b) (recall Fig. 4.3).

is equivalent to the equation

x = g(xy)

The solution in Fig. 6.3a is convergent because the estimates of x move closer to th
root with each iteration. The same is true for Fig. 6.3b. However, this is not the case f0
Fig. 6.3c and d, where the iterations diverge from the root. Notice that convergent
seems to occur only when the absolute value of the slope of y, = g(x) is less than
slope of y; = x, that is, when |g'(x)] <

this result.

6.1.2 Algorithm for Fixed-Point lteration

The computer algorithm for fixed-point iteration is extremely simple. It consists of a lodf
to iteratively compute new estimates until the termination criterion has been met. Figure 68
presents pseudocode for the algorithm. Other open methods can be programmed in a simi
lar way, the major modification being to change the iterative formula that is used to comp It

the new root estimate.

Convergence of Fixed-Point Iteration

Now. if we let @ = x; and b = x,, the right-hand side of Fg
(B6.1.1) can be expressed as

glx) —g(x;) = (x, —x;)g' (&)

where £ is somewhere between x; and x,. This result can then
substituted into Eq. (B6.1.1) to yield

Xr — Xig) = (X, — x;:)8' (&)
If the true error for iteration i is defined as

Eii =X —x

then Eq. (B6.1.3) becomes
Er i+l = S‘(‘E)Er.;

Consequently, if |g'(x)| < 1, the errors decrease with each iteratiof
For |g'(x)| > 1, the errors grow. Notice also that if the derivativel
positive, the errors will be positive, and hence, the iterative solutig
will be monotonic (Fig. 6.3a and c). If the derivative is negan
the errors will oscillate (Fig. 6.3b and d).
An offshoot of the analysis is that it also demonstrates that wi 31
the method converges, the error is roughly proportional to and lé§
than the error of the previous step. For this reason, simple ﬁx
point iteration is said to be linearly convergent.

1. Box 6.1 provides a theoretical derivation 0
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FUNCTION Fixpt(x0, es, imax, iter, ea)
xr = x0
iter =0
IFJE’,J
xrold = xr

xr = g(xrold)

iter = iter + 1

IF xr # 0 THEN
ea = |Xr = xrold| 5,
Xr
. END IF
URE 6.4 L . S
bseudocode for fixed-point IF ;;)ﬁ < es OR iter = imax EXIT
ation. Note that other open END DO
i h e Fixpt = xr
ods can be cast in this gen j
eral format. END Fixpt
iteratio
“ivative i
2 solutiop]
negative;
that Whe[zl
2> and less 5
ple fixed
' Slope = /'(x)
07 P LR R SR N
SfGxp -0
~ FIGURE 6.5 a0 ‘
i Graphical depiction of the 0
er to the NewionRaphson method. e
case for A tangent to the function of x
vergences [that is, f{x]] is extrapolated

- down to the x axis to provide
> an estimate of the root at : TIN

than the
vation of

6.2 THE NEWTON-RAPHSON METHOD

of a loop

‘igure 6.4 Perhaps the most widely used of all root-locating formulas is the Newton-Raphson equa-
in a simi- tion (Fig. 6.5). If the initial guess at the root is x;, a tangent can be extended from the point
compute [x;, f(x)]. The point where this tangent crosses the x axis usually represents an improved

estimate of the root.
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pretation (an alternative method based on the Taylor series is described in Box 6.2). Asij
Fig. 6.5, the first derivative at x is equivalent to the slope: :

which can be rearranged to yield

oS
f(x)

Xit1 = Xi

which is called the Newron-Raphson formula.

Newton-Raphson Method

Problem Statement. Use the Newton-Raphson method to estimate the root of f(x) =
e * — x, employing an initial guess of xo = 0. 5

Solution.  The first derivative of the function can be evaluated as
fx)=—-e" -1
which can be substituted along with the original function into Eq. (6.6) to give

X

e
A e 1

— X;

Starting with an initial guess of xp = 0, this iterative equation can be applied to compulg

i X £r (%)

0 0 100

1 0.500000000 11.8

2 0.566311003 0.147

3 0.567143165 0.0000220
4 0.567143290 < gt

Thus, the approach rapidly converges on the true root. Notice that the true percent relatiVg
error at each iteration decreases much faster than it does in simple fixed-point iteratiol
(compare with Example 6.1).

6.2.1 Termination Criteria and Error Estimates

As with other root-location methods, Eq. (3.5) can be used as a termination criterion. In
dition, however, the Taylor series derivation of the method (Box 6.2) provides theoreticd
insight regarding the rate of convergence as expressed by E;;; = O( i{f ). Thus the erros
should be roughly proportional to the square of the previous error. In other words, U
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al inter. |
2). Asin 4

REL

de from the geometric derivation [Egs. (6.5) and (6.6)], the
ewton-Raphson method may also be developed from the Taylor
jes expansion. This alternative derivation is useful in that it also
ides insight into the rate of convergence of the method.

Recall from Chap. 4 that the Taylor series expansion can be rep-

ted as
flxiv) = f6) + () (xie — x;)

©5)

6.6)4

(B6.2.1)

e £ lies somewhere in the interval from X; 10 X; 1. An approxi-
e version is obtainable by truncating the series after the first
vative term:
of () = (ivr) = f0) + /(5 (i — x,)
or
(B6.2.2)
h can be solved for
 f)

Jix:)
is identical to Eq. (6.6). Thus, we have derived the Newton-
phson formula using a Taylor series.
de from the derivation, the Taylor series can also be used to

mate the error of the formula. This can be done by realizing that
he complete Taylor series were employed, an exact result would

compute?

it relativ
iteration Problem Statement.

error, as in

~ —f (Ir)Fg

Eivi & 2" F2
Li+1 ZfI(Xr) i

on. In ad+

u:)ren E Solution.
the errof}
rords, - fl(i) T Pl
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Box 6.2 Derivation and Error Analysis of the Newton-Raphson Method

be obtained. For this situation x, . | = X, where x is the true value
of the root. Substituting this value along with f(x,) =0 into
Eq. (B6.2.1) yields
* [ (&)
0= flx) + f'(x)(x — x,) 4 l,—,{u',

—x;)? (B6.2.3)

Equation (B6.2.2) can be subtracted from Eq. (B6.2.3) to give
7 ) )

2!

2

Xy — X F

0= f'(x)(x, —x;i40) + {B6.2.4)
Now, realize that the error is equal to the discrepancy between x;, |
and the true value x,, as in

Briey =1, = Xigl

and Eq. (B6.2.4) can be expressed as

0= f’(xi)El.£+| + f—z(iélbxlu

(B6.2.5)
If we assume convergence, both X; and § should eventually be ap-
proximated by the root x,, and Eq. (B6.2.5) can be rearranged to
yield

B 5 F2

2f"(x)

According to Eq. (B6.2.6), the error is roughly proportional to the
square of the previous error. This means that the number of correct
decimal places approximately doubles with each iteration. Such
behavior is referred to as quadratic convergence. Example 6.4
manifests this property.

(B6.2.6)

Er.Hl i

number of significant figures of accuracy approximately doubles with each iteration. This
behavior is examined in the following example.
Error Analysis of Newton-Raphson Method

As derived in Box 6.2, the Newton-Raphson method is quadrati-
cally convergent. That is, the error is roughly proportional to the square of the previous

(E6.4.1)

Examine this formula and see if it applies to the results of Example 6.3,

The first derivative of f(x) = ¢ — v is




142 OPEN METHODS E

which can be evaluated at x, = 0.56714329 as f(0.56714329) = —1.56714329, The; ;
second derivative is ;i

Fflxy=e~
which can be evaluated as ”(0.56714329) = 0.56714329. These results can be substituted

Ré

i

into Eq. (E6.4.1) to yield '_ -
0.56714329

Eip S ——o—— — _F2 —0:18095E2
ook 2(—1.56714329) * s

From Example 6.3, the initial error was E, ; = 0.56714329. which can be substituted intg
the error equation to predict

E; 1 = 0.18095(0.56714329) = 0.0582
which is close to the true error of 0.06714329. For the next iteration,

E; > = 0.18095(0.06714329)? = 0.0008158

which also compares favorably with the true error of 0.0008323. For the third iteraLio
E, 5 = 0.18095(0.0008323) = 0.000000125 '
which is the error obtained in Example 6.3. The error estimate improves in this manner

because, as we come closer to the root, x and £ are better approximated by x, [recall ol |
assumption in going from Eq. (B6.2.5) to Eq. (B6.2.6) in Box 6.2]. Finally, :

E, 4 = 0.18095(0.000000125)> = 2.83 x 1075
Thus, this example illustrates that the error of the Newton-Raphson method for this case

in fact, roughly proportional (by a factor of 0.18095) to the square of the error of the pre
vious iteration. &

6.2.2 Pitfalls of the Newton-Raphson Method

Although the Newton-Raphson method is often very efficient, there are situations where it _
performs poorly. A special case—multiple roots—will be addressed later in this chaptet
However, even when dealing with simple roots, difficulties can also arise, as in the follows :
ing example. '

Example of a Slowly Converging Function with Newton-Raphson

Problem Statement. Determine the positive root of f(x) = x'"" — 1 using the Newton§
Raphson method and an initial guess of x = ().5. 3

Solution. The Newton-Raphson formula for this case is
|

r
Xigl = Xj — ———
10x?

which can be used to compute
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Iteration x
0 0.5
| 51.65
2 46.485
3 41.8365
4 37.65285
5 33.887565
o0 1.0000000

Thus, after the first poor prediction, the technique is converging on the true root of 1, but
at a very slow rate.

Aside from slow convergence due to the nature of the function, other difficulties can
arise, as illustrated in Fig. 6.6. For example, Fig. 6.6a depicts the case where an inflection
point [that is, f"(x) = 0] occurs in the vicinity of a root. Notice that iterations beginning at
Xo progressively diverge from the root. Figure 6.6 illustrates the tendency of the Newton-
Raphson technique to oscillate around a local maximum or minimum. Such oscillations
may persist, or as in Fig. 6.6b, a near-zero slope is reached, whereupon the solution is sent
far from the area of interest. Figure 6.6¢ shows how an initial guess that is close to one root
can jump to a location several roots away. This tendency to move away from the area of
interest is because near-zero slopes are encountered. Obviously, a zero slope [ f'(x) = 0] is
truly a disaster because it causes division by zero in the Newton-Raphson formula
[Eq. (6.6)]. Graphically (see Fig 6.6d), it means that the solution shoots off horizontally
and never hits the x axis.

Thus, there is no general convergence criterion for Newton-Raphson. Its convergence
depends on the nature of the function and on the accuracy of the initial guess. The only
remedy is to have an initial guess that is “sufficiently” close to the root. And for some
functions, no guess will work! Good guesses are usually predicated on knowledge of the
physical problem setting or on devices such as graphs that provide insight into the behav-
ior of the solution. The lack of a general convergence criterion also suggests that good
computer software should be designed to recognize slow convergence or divergence. The
next section addresses some of these issues.

6.2;3 Algorithm for Newton-Raphson

An algorithm for the Newton-Raphson method is readily obtained by substituting Eq. (6.6)
for the predictive formula [Eq. (6.2)] in Fig. 6.4. Note, however, that the program must
also be modified to compute the first derivative. This can be simply accomplished by the
inclusion of a user-defined function.

Additionally, in light of the foregoing discussion of potential problems of the Newton-
Raphson method, the program would be improved by incorporating several additional
features:
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[

i

X

G

FIGURE 6.6

Four cases where the NewtonRaphson method exhibits poor ¢ onvergence.
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-

A plotting routine should be included in the program.

2. Atthe end of the computation, the final root estimate should always be substituted into
the original function to compute whether the result is close to zero. This check partially
guards against those cases where slow or oscillating convergence may lead to a small
value of &, while the solution is still far from a root.

3. The program should always include an upper limit on the number of iterations to guard
against oscillating, slowly convergent, or divergent solutions that could persist inter-
minably.

4. The program should alert the user and take account of the possibility that f'(x) might

equal zero at any time during the computation.

THE SECANT METHOD

A potential problem in implementing the Newton-Raphson method is the evaluation of the
derivative. Although this is not inconvenient for polynomials and many other functions,
there are certain functions whose derivatives may be extremely difficult or inconvenient to
evaluate. For these cases, the derivative can be approximated by a backward finite divided
difference, as in (Fig. 6.7)

f’(x.') o Fxi—y) — flxi)
Xi—1 —X;
FIGURE 6.7

Graphical depiction of the secant method. This technique is similar to the Newton-Raphson tech-
nique (Fig. 6.5 in the sense that an estimate of the root is predicted by extrapolating a tangent
of the function fo the x axis. However, the secant method uses a difference rather than a deriva-
tive to estimate the slope.
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